TY - JOUR
T1 - Reducing the solubility of the major birch pollen allergen Bet v 1 by particle-loading mitigates Th2 responses
AU - Kraiem, Amin
AU - Pelamatti, Erica
AU - Grosse-Kathoefer, Sophie
AU - Demir, Hilal
AU - Vollmann, Ute
AU - Ehgartner, Caroline
AU - Stigler, Maria
AU - Punz, Benjamin
AU - Johnson, Litty
AU - Hüsing, Nicola
AU - Bohle, Barbara
AU - Aglas, Lorenz
N1 - Copyright:
© 2024 Japanese Society of Allergology
PY - 2025/1
Y1 - 2025/1
N2 - Background: Solubility is a common feature of allergens. However, the causative relationship between this protein-intrinsic feature and sensitization capacity of allergens is not fully understood. This study aimed to proof the concept of solubility as a protein intrinsic feature of allergens. Methods: The soluble birch pollen allergen Bet v 1 was covalently coupled to 1 μm silica particles. IgE-binding and -cross-linking capacity was assessed by inhibition ELISA and mediator release assay, respectively. Alterations in adjuvanticity by particle-loading were investigated by activation of dendritic cells, mast cells and the Toll-like receptor 4 pathway as well as by Th2 polarization in an IL-4 reporter mouse model. In BALB/c mice, particle-loaded and soluble Bet v 1 were compared in a model of allergic sensitization. Antigen uptake and presentation was analysed by restimulating human Bet v 1-specific T cell lines. Results: Covalent coupling of Bet v 1 to silica particles resulted in an insoluble antigen with retained IgE-binding and -cross-linking capacity and no increase in adjuvanticity. In vivo, particle-loaded Bet v 1 induced significantly lower Bet v 1-specific (s)IgE, whereas sIgG1 and sIgG2a levels remained unaffected. The ratio of Th2 to Th1 cells was significantly lower in mice sensitized with particle-loaded Bet v 1. Particle-loading of Bet v 1 resulted in a 24-fold higher T cell activation capacity in Bet v 1-specific T cell lines, indicating more efficient uptake and presentation than of soluble Bet v 1. Conclusions: Our results show that solubility is a decisive factor contributing to the sensitization capacity of allergens. The reduction in sensitization capacity of insoluble, particle-loaded antigens results from enhanced antigen uptake and presentation compared to soluble allergens.
AB - Background: Solubility is a common feature of allergens. However, the causative relationship between this protein-intrinsic feature and sensitization capacity of allergens is not fully understood. This study aimed to proof the concept of solubility as a protein intrinsic feature of allergens. Methods: The soluble birch pollen allergen Bet v 1 was covalently coupled to 1 μm silica particles. IgE-binding and -cross-linking capacity was assessed by inhibition ELISA and mediator release assay, respectively. Alterations in adjuvanticity by particle-loading were investigated by activation of dendritic cells, mast cells and the Toll-like receptor 4 pathway as well as by Th2 polarization in an IL-4 reporter mouse model. In BALB/c mice, particle-loaded and soluble Bet v 1 were compared in a model of allergic sensitization. Antigen uptake and presentation was analysed by restimulating human Bet v 1-specific T cell lines. Results: Covalent coupling of Bet v 1 to silica particles resulted in an insoluble antigen with retained IgE-binding and -cross-linking capacity and no increase in adjuvanticity. In vivo, particle-loaded Bet v 1 induced significantly lower Bet v 1-specific (s)IgE, whereas sIgG1 and sIgG2a levels remained unaffected. The ratio of Th2 to Th1 cells was significantly lower in mice sensitized with particle-loaded Bet v 1. Particle-loading of Bet v 1 resulted in a 24-fold higher T cell activation capacity in Bet v 1-specific T cell lines, indicating more efficient uptake and presentation than of soluble Bet v 1. Conclusions: Our results show that solubility is a decisive factor contributing to the sensitization capacity of allergens. The reduction in sensitization capacity of insoluble, particle-loaded antigens results from enhanced antigen uptake and presentation compared to soluble allergens.
KW - Allergic sensitization
KW - Bet v 1
KW - IgE
KW - Silica particles
KW - Solubility
UR - http://www.scopus.com/inward/record.url?scp=85201295056&partnerID=8YFLogxK
U2 - 10.1016/j.alit.2024.07.007
DO - 10.1016/j.alit.2024.07.007
M3 - Article
AN - SCOPUS:85201295056
SN - 1323-8930
VL - 74
SP - 126
EP - 135
JO - Allergology International
JF - Allergology International
IS - 1
ER -