Abstract
Background: Pseudomonas syringae can cause stem necrosis and canker in a wide range of woody species including cherry, plum, peach, horse chestnut and ash. The detection and quantification of lesion progression over time in woody tissues is a key trait for breeders to select upon for resistance. Results: In this study a general, rapid and reliable approach to lesion quantification using image recognition and an artificial neural network model was developed. This was applied to screen both the virulence of a range of P. syringae pathovars and the resistance of a set of cherry and plum accessions to bacterial canker. The method developed was more objective than scoring by eye and allowed the detection of putatively resistant plant material for further study. Conclusions: Automated image analysis will facilitate rapid screening of material for resistance to bacterial and other phytopathogens, allowing more efficient selection and quantification of resistance responses.
Original language | English |
---|---|
Article number | 57 |
Number of pages | 9 |
Journal | Plant Methods |
Volume | 11 |
DOIs | |
Publication status | Published - 24 Dec 2015 |
Keywords
- Artificial neural network
- Image analysis
- Stem canker
ASJC Scopus subject areas
- Biotechnology
- Genetics
- Plant Science