Quantum sensing for gravity cartography

Ben Stray, Andrew Lamb, Aisha Kaushik, Jamie Vovrosh, Anthony Rodgers, Jonathan Winch, Farzad Hayati, Daniel Boddice, Artur Stabrawa, Alexander Niggebaum, Mehdi Langlois, Yu-Hung Lien, Samuel Lellouch, Sanaz Roshanmanesh, Kevin Ridley, Geoffrey de Villiers, Gareth Brown, Trevor Cross, George Tuckwell, Asaad FaramarziNicole Metje, Kai Bongs, Michael Holynski

Research output: Contribution to journalArticlepeer-review

87 Downloads (Pure)

Abstract

The sensing of gravity has emerged as a tool in geophysics applications such as engineering and climate research1,2,3, including the monitoring of temporal variations in aquifers4 and geodesy5. However, it is impractical to use gravity cartography to resolve metre-scale underground features because of the long measurement times needed for the removal of vibrational noise6. Here we overcome this limitation by realizing a practical quantum gravity gradient sensor. Our design suppresses the effects of micro-seismic and laser noise, thermal and magnetic field variations, and instrument tilt. The instrument achieves a statistical uncertainty of 20 E (1 E = 10−9 s−2) and is used to perform a 0.5-metre-spatial-resolution survey across an 8.5-metre-long line, detecting a 2-metre tunnel with a signal-to-noise ratio of 8. Using a Bayesian inference method, we determine the centre to ±0.19 metres horizontally and the centre depth as (1.89 −0.59/+2.3) metres. The removal of vibrational noise enables improvements in instrument performance to directly translate into reduced measurement time in mapping. The sensor parameters are compatible with applications in mapping aquifers and evaluating impacts on the water table7, archaeology8,9,10,11, determination of soil properties12 and water content13, and reducing the risk of unforeseen ground conditions in the construction of critical energy, transport and utilities infrastructure14, providing a new window into the underground.
Original languageEnglish
Pages (from-to)590–594
JournalNature
Volume602
Issue number7898
Early online date23 Feb 2022
DOIs
Publication statusPublished - 24 Feb 2022

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Quantum sensing for gravity cartography'. Together they form a unique fingerprint.

Cite this