TY - JOUR
T1 - Quantifying the effects of near surface density variation on quantum technology gravity and gravity gradient instruments
AU - Boddice, Daniel
AU - Metje, Nicole
AU - Tuckwell, George
PY - 2019/5/1
Y1 - 2019/5/1
N2 - Natural density variations in the near surface soil (i.e.
the top 5 m) cause variations in the values recorded by geophysical surveys
undertaken with gravity instruments. Whilst this ‘soil noise’ is too small to
be noticeable with current instruments (e.g. Scintrex CG-5 and CG-6), the
future use of more accurate instruments such as quantum technology gravity
sensors, especially if used in a gradiometer configuration makes this noise
source more significant and in need of characterisation and quantification.
This paper reviews the magnitude and distribution of density variations in the
near surface using data from the British Geological Survey (BGS) national
geotechnical properties database which is then used to quantify the effect on
practical gravity measurements in computer simulations. The desk study identified that the scale of density
variation in the near surface was typically within a range of 600-900 kg/m3,
and showed no obvious relationship with underlying geology, superficial deposits
or depth below the surface. The distribution of density varied, from normally
distributed to between normal and uniform or bimodal distributions. The forward
modelled computer simulations showed a significant impact on the measurements
of gravity if new instruments can reach greater levels of accuracy, especially
for gravity gradient instruments. Analysing possible methods of suppressing
this noise source through the design of gravity gradient instruments showed
that, although increasing the height of the instrument above the ground is
almost twice as effective at decreasing the scale of the soil noise, increasing
the sensor vertical spacing may be the preferred option. This is due to relaxed
sensitivity requirements on the new sensors and the preservation of the noise
in shorter signal wavelength bands than the targets of interest, which not only
reduces the cases of mistaken features of interest but also provides the
possibility of spatial filtering to be used in order to enhance the signals
from targets of interest.
AB - Natural density variations in the near surface soil (i.e.
the top 5 m) cause variations in the values recorded by geophysical surveys
undertaken with gravity instruments. Whilst this ‘soil noise’ is too small to
be noticeable with current instruments (e.g. Scintrex CG-5 and CG-6), the
future use of more accurate instruments such as quantum technology gravity
sensors, especially if used in a gradiometer configuration makes this noise
source more significant and in need of characterisation and quantification.
This paper reviews the magnitude and distribution of density variations in the
near surface using data from the British Geological Survey (BGS) national
geotechnical properties database which is then used to quantify the effect on
practical gravity measurements in computer simulations. The desk study identified that the scale of density
variation in the near surface was typically within a range of 600-900 kg/m3,
and showed no obvious relationship with underlying geology, superficial deposits
or depth below the surface. The distribution of density varied, from normally
distributed to between normal and uniform or bimodal distributions. The forward
modelled computer simulations showed a significant impact on the measurements
of gravity if new instruments can reach greater levels of accuracy, especially
for gravity gradient instruments. Analysing possible methods of suppressing
this noise source through the design of gravity gradient instruments showed
that, although increasing the height of the instrument above the ground is
almost twice as effective at decreasing the scale of the soil noise, increasing
the sensor vertical spacing may be the preferred option. This is due to relaxed
sensitivity requirements on the new sensors and the preservation of the noise
in shorter signal wavelength bands than the targets of interest, which not only
reduces the cases of mistaken features of interest but also provides the
possibility of spatial filtering to be used in order to enhance the signals
from targets of interest.
KW - Gravity
KW - Gravity gradient
KW - Noise quantification
KW - Quantum technology
UR - http://www.scopus.com/inward/record.url?scp=85063460508&partnerID=8YFLogxK
U2 - 10.1016/j.jappgeo.2019.03.012
DO - 10.1016/j.jappgeo.2019.03.012
M3 - Article
SN - 0926-9851
VL - 164
SP - 160
EP - 178
JO - Journal of Applied Geophysics
JF - Journal of Applied Geophysics
ER -