TY - JOUR
T1 - Pyrrolidinedithiocarbamate increases the therapeutic index of 5-fluorouracil in a mouse model
AU - Bach, Simon
AU - Chinery, R
AU - O'Dwyer, ST
AU - Potten, CS
AU - Coffey, RJ
AU - Watson, AJM
PY - 2000/1/1
Y1 - 2000/1/1
N2 - Background & Aims: The thiol-containing antioxidant pyrrolidinedithiocarbamate (PDTC) enhances the cytotoxic efficacy of 5-fluorouracil (5-FU) against human colorectal cancer cell lines in vitro and in vivo. This process appears to be mediated by a sustained increase in p21 expression, independent of p53 function, resulting in growth arrest and apoptosis, We determined whether PDTC augmented 5-FU intestinal toxicity in non-tumor-bearing mice. Methods: Apoptotic and mitotic indices were measured in the small and large intestine on a cell positional basis at intervals throughout the 72-hour period after administration of 5-FU (40 mg/kg) and PDTC (250 mg/kg). The proportion of crypts regenerating after 5-FU (600-1200 mg/kg) and PDTC (500 mg/kg) was also measured, Results: 5-FU therapy induces substantial apoptotic cell death with simultaneous inhibition of mitotic activity within the small and large intestinal epithelium. PDTC reduces 5-FU-induced apoptotic events in the colon by 49%, predominantly among clonogenic stem and transit cells while promoting the early recovery of mitotic activity, As a consequence, PDTC increased the proportion of regenerating colonic crypts after 5-FU therapy. PDTC did not, however, significantly modulate 5-FU toxicity in the small intestine. Conclusions: PDTC does not augment the intestinal toxicity of 5-FU and actually protects the colonic mucosa. These results support further investigation of PDTC and related compounds as treatments for colorectal cancer.
AB - Background & Aims: The thiol-containing antioxidant pyrrolidinedithiocarbamate (PDTC) enhances the cytotoxic efficacy of 5-fluorouracil (5-FU) against human colorectal cancer cell lines in vitro and in vivo. This process appears to be mediated by a sustained increase in p21 expression, independent of p53 function, resulting in growth arrest and apoptosis, We determined whether PDTC augmented 5-FU intestinal toxicity in non-tumor-bearing mice. Methods: Apoptotic and mitotic indices were measured in the small and large intestine on a cell positional basis at intervals throughout the 72-hour period after administration of 5-FU (40 mg/kg) and PDTC (250 mg/kg). The proportion of crypts regenerating after 5-FU (600-1200 mg/kg) and PDTC (500 mg/kg) was also measured, Results: 5-FU therapy induces substantial apoptotic cell death with simultaneous inhibition of mitotic activity within the small and large intestinal epithelium. PDTC reduces 5-FU-induced apoptotic events in the colon by 49%, predominantly among clonogenic stem and transit cells while promoting the early recovery of mitotic activity, As a consequence, PDTC increased the proportion of regenerating colonic crypts after 5-FU therapy. PDTC did not, however, significantly modulate 5-FU toxicity in the small intestine. Conclusions: PDTC does not augment the intestinal toxicity of 5-FU and actually protects the colonic mucosa. These results support further investigation of PDTC and related compounds as treatments for colorectal cancer.
U2 - 10.1016/S0016-5085(00)70416-1
DO - 10.1016/S0016-5085(00)70416-1
M3 - Article
C2 - 10611156
VL - 118
SP - 81
EP - 89
JO - Gastroenterology
JF - Gastroenterology
IS - 1
ER -