PTR-MS studies of the reactions of H3O+ with a number of deuterated volatile organic compounds and the subsequent sequential reactions of the primary product ions with water under normal and humid drift tube conditions: implications for use of deuterated compounds for breath analysis

Paweł Mochalski, Sofia Mirmigkou, Karl Unterkofler, Philipp Sulzer, Christopher A. Mayhew, Tilmann D. Märk

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
164 Downloads (Pure)

Abstract

Product ion distributions resulting from the primary reactions of H3O+ with nine D-labeled volatile organic compounds and the subsequent sequential reactions with H2O have been determined using a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF 8000 (IONICON Analytik GmbH)) at various reduced electric field (E/N) values ranging from 80 up to 150 Td and for two different absolute humidity levels of air sample < 0.1% and 5%. The specific D-labeled compounds used in this study are acetone-d6, toluene-d8, benzene-d6, ethanol-d (C2H5OD), ethanol-d2 (CH3CD2OH), ethanol-d6, 2-propanol-d8, 2-propanol-d3 (CD3CH(OH)CH3), and isoprene-d5 (CH2CHC(CD2)CD3). With the exception of the two 2-propanol compounds, non-dissociative proton transfer is the dominant primary reaction pathway. For 2-propanol-d8 and 2-propanol-d3 the major primary reaction channel involved is dissociative proton transfer. However, unlike their undeuterated counterparts, the primary product ions undergo subsequent deuterium/hydrogen isotope exchange reactions with the ever present water in the drift tube, the extent of which of course depends on the humidity within that tube. This exchange leads to the generation of various isotopologue product ions, the product ion branching percentages of which are also dependent on the humidity in the drift tube. This results in complex mass spectra and the distribution of product ions leads to issues of reduced sensitivity and accuracy. However, the effect of D/H exchange considerably varies between the compounds under study. In the case of acetone-d6 it is very weak (< 1%), because the exchange process is not facile when the deuterium is in the methyl functional group. In comparison, the H3O+/ benzene-d6 (C6D6) reaction and sequential reactions with water result in the production of the isotopologue ions C6Dn(H7-n)+ (where n = 0–6). Changing the value of E/N and/or the humidity in the drift tube considerably affects the amount of the isotope exchange reactions and hence the resulting sequential product ion distributions. An important conclusion of the findings from this work is that care must be taken in the choice of an exogenous deuterated compound for use in breath pharmacokinetic studies using proton transfer reaction mass spectrometry; otherwise the resulting D/H exchange processes impose interpretative problems.
Original languageEnglish
Pages (from-to)65-70
Number of pages6
JournalInternational Journal of Mass Spectrometry
Volume436
Early online date12 Nov 2018
DOIs
Publication statusPublished - Feb 2019

Keywords

  • deuterated volatile organic compunds
  • PTR-TOF-MS
  • h3O+ reactions
  • fragmentation patterns
  • D/H isotopic exchange
  • H O reactions
  • Fragmentation patterns
  • Deuterated volatile organic compounds

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Instrumentation
  • Spectroscopy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'PTR-MS studies of the reactions of H3O+ with a number of deuterated volatile organic compounds and the subsequent sequential reactions of the primary product ions with water under normal and humid drift tube conditions: implications for use of deuterated compounds for breath analysis'. Together they form a unique fingerprint.

Cite this