Progenitor, environment, and modelling of the interacting transient AT 2016jbu (Gaia16cfr)

S. J. Brennan, M. Fraser, J. Johansson, A. Pastorello, R. Kotak, H. F. Stevance, T. -W. Chen, J. J. Eldridge, S. Bose, P. J. Brown, E. Callis, R. Cartier, M. Dennefeld, Subo Dong, P. Duffy, N. Elias-Rosa, G. Hosseinzadeh, E. Hsiao, H. Kuncarayakti, A. Martin-CarrilloB. Monard, G. Pignata, D. Sand, B. J. Shappee, S. J. Smartt, B. E. Tucker, L. Wyrzykowski, H. Abbot, S. Benetti, J. Bento, S. Blondin, Ping Chen, A. Delgado, L. Galbany, M. Gromadzki, C. P. Gutiérrez, L. Hanlon, D. L. Harrison, D. Hiramatsu, S. T. Hodgkin, T. W. -S. Holoien, D. A. Howell, C. Inserra, E. Kankare, S. Kozłowski, T. E. Müller-Bravo, K. Maguire, C. McCully, P. Meintjes, N. Morrell, M. Nicholl, D. O'Neill, P. Pietrukowicz, R. Poleski, J. L. Prieto, A. Rau, D. E. Reichart, T. Schweyer, M. Shahbandeh, J. Skowron, J. Sollerman, I. Soszyński, M. D. Stritzinger, M. Szymański, L. Tartaglia, A. Udalski, K. Ulaczyk, D. R. Young, M. van Leeuwen, B. van Soelen

Research output: Contribution to journalArticlepeer-review

Abstract

We present the bolometric light curve, identification and analysis of the progenitor candidate, and preliminary modelling of AT 2016jbu (Gaia16cfr). We find a progenitor consistent with a ~ 22-25 M yellow hypergiant surrounded by a dusty circumstellar shell, in agreement with what has been previously reported. We see evidence for significant photometric variability in the progenitor, as well as strong Hα emission consistent with pre-existing circumstellar material. The age of the environment, as well as the resolved stellar population surrounding AT 2016jbu, supports a progenitor age of >10 Myr, consistent with a progenitor mass of ~22 M. A joint analysis of the velocity evolution of AT 2016jbu and the photospheric radius inferred from the bolometric light curve shows the transient is consistent with two successive outbursts/explosions. The first outburst ejected material with velocity ~650 km s-1, while the second, more energetic event ejected material at ~4500 km s-1. Whether the latter is the core collapse of the progenitor remains uncertain. We place a limit on the ejected 56Ni mass of <0.016 M. Using the Binary Population And Spectral Synthesis (BPASS) code, we explore a wide range of possible progenitor systems and find that the majority of these are in binaries, some of which are undergoing mass transfer or common-envelope evolution immediately prior to explosion. Finally, we use the SuperNova Explosion Code (SNEC) to demonstrate that the low-energy explosions within some of these binary systems, together with sufficient circumstellar material, can reproduce the overall morphology of the light curve of AT 2016jbu.
Original languageEnglish
Pages (from-to)5666–5685
Number of pages20
JournalMonthly Notices of the Royal Astronomical Society
Volume513
Issue number4
Early online date6 May 2022
DOIs
Publication statusE-pub ahead of print - 6 May 2022

Keywords

  • stars: massive
  • supernovae: general
  • supernovae: individual: AT 2016jbu

Fingerprint

Dive into the research topics of 'Progenitor, environment, and modelling of the interacting transient AT 2016jbu (Gaia16cfr)'. Together they form a unique fingerprint.

Cite this