Prediction and Visualisation of Bony Impingement for Subject Specific Total Hip Arthroplasty

A. Palit, R. King, Y. Gu, J. Pierrepont, Z. Hart, M. T. Elliott, M. A. Williams

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Bony impingement (BI) may contribute to restricted hip joint motion, and recurrent dislocation after total hip arthroplasty (THA), and therefore, should be avoided where possible. However, BI risk assessment is generally performed intra-operatively by surgeons, which is partially subjective and qualitative. Therefore, the aim of the study was to develop a method for identifying subject-specific BI, and subsequently, visualising BI area on native bone anatomy to highlight the amount of bone should be resected. Activity definitions and subject-specific bone geometries, constructed from CT scans, with planned implants were used as inputs for the method. For each activity, a conical clearance angle (CCA) was checked between femur and pelvis through simulation. Simultaneously, BI boundary and area were automatically calculated using ray intersection and region growing algorithm respectively. The potential use of the developed method was explained through a case study using an anonymised pre-THA patient data. Two pure (flexion, and extension) and two combined hip joint motions (internal and external rotation at flexion and extension respectively) were considered as activities. BI area were represented in two ways: (a) CCA specific where BI area for each activity with different CCAs was highlighted, (b) activity specific where BI area for all activities with a particular CCA was presented. Result showed that BI area between the femoral and pelvic parts was clearly identified so that the pre-operative surgical plan could be adjusted to minimise impingement. Therefore, this method could potentially be used to examine the effect of different preoperative plans and hip motion on BI, and to guide bony resection during THA surgery.

Original languageEnglish
Title of host publication2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages2127-2131
Number of pages5
ISBN (Electronic)9781538613115
DOIs
Publication statusPublished - Jul 2019
Event41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 - Berlin, Germany
Duration: 23 Jul 201927 Jul 2019

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
Country/TerritoryGermany
CityBerlin
Period23/07/1927/07/19

Bibliographical note

Publisher Copyright:
© 2019 IEEE.

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Prediction and Visualisation of Bony Impingement for Subject Specific Total Hip Arthroplasty'. Together they form a unique fingerprint.

Cite this