Predicting floods with flickr tags

Nataliya Tkachenko, Stephen Jarvis, Rob Procter

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)

Abstract

Increasingly, user generated content (UGC) in social media postings and their associated metadata such as time and location stamps are being used to provide useful operational information during natural hazard events such as hurricanes, storms and floods. The main advantage of these new sources of data are twofold. First, in a purely additive sense, they can provide much denser geographical coverage of the hazard as compared to traditional sensor networks. Second, they provide what physical sensors are not able to do: By documenting personal observations and experiences, they directly record the impact of a hazard on the human environment. For this reason interpretation of the content (e.g., hashtags, images, text, emojis, etc) and metadata (e.g., keywords, tags, geolocation) have been a focus of much research into social media analytics. However, as choices of semantic tags in the current methods are usually reduced to the exact name or type of the event (e.g., hashtags '#Sandy' or '#flooding'), the main limitation of such approaches remains their mere nowcasting capacity. In this study we make use of polysemous tags of images posted during several recent flood events and demonstrate how such volunteered geographic data can be used to provide early warning of an event before its outbreak.

Original languageEnglish
Article numbere0172870
JournalPLoS ONE
Volume12
Issue number2
DOIs
Publication statusPublished - Feb 2017

Bibliographical note

Publisher Copyright:
© 2017 Tkachenko et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Predicting floods with flickr tags'. Together they form a unique fingerprint.

Cite this