Precision epitaxy for aqueous 1D and 2D poly(ε-caprolactone) assemblies

Maria C. Arno, Maria Inam, Zachary Coe, Graeme Cambridge, Laura J. Macdougall, Robert Keogh, Andrew P. Dove, Rachel K. O'Reilly

Research output: Contribution to journalArticlepeer-review

86 Citations (Scopus)
208 Downloads (Pure)


The fabrication of monodisperse nanostructures of highly controlled size and morphology with spatially distinct functional regions is a current area of high interest in materials science. Achieving this control directly in a biologically relevant solvent, without affecting cell viability, opens the door to a wide range of biomedical applications, yet this remains a significant challenge. Herein, we report the preparation of biocompatible and biodegradable poly(ε-caprolactone) 1D (cylindrical) and 2D (platelet) micelles in water and alcoholic solvents via crystallization-driven self-assembly. Using epitaxial growth in an alcoholic solvent, we show exquisite control over the dimensions and dispersity of these nanostructures, allowing access to uniform morphologies and predictable dimensions based on the unimer-to-seed ratio. Furthermore, for the first time, we report epitaxial growth in aqueous solvent, achieving precise control over 1D nanostructures in water, an essential feature for any relevant biological application. Exploiting this further, a strong, biocompatible and fluorescent hydrogel was obtained as a result of living epitaxial growth in aqueous solvent and cell culture medium. MC3T3 and A549 cells were successfully encapsulated, demonstrating high viability (>95% after 4 days) in these novel hydrogel materials.

Original languageEnglish
Pages (from-to)16980-16985
Number of pages6
JournalJournal of the American Chemical Society
Issue number46
Early online date27 Oct 2017
Publication statusPublished - 22 Nov 2017

Bibliographical note

ACS AuthorChoice - This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.


Dive into the research topics of 'Precision epitaxy for aqueous 1D and 2D poly(ε-caprolactone) assemblies'. Together they form a unique fingerprint.

Cite this