TY - JOUR
T1 - Potentials of Mahachanok mango peel pectin in modulating glycaemic index in simulated in vitro carbohydrate digestion of meat product
AU - Srikamwang, Chonlada
AU - Willats, William G.T.
AU - Bakshani, Cassie R.
AU - Sommano, Sarana Rose
AU - Wongkaew, Malaiporn
PY - 2024/7/23
Y1 - 2024/7/23
N2 - Pectin derived from mango peel biomass offers a noteworthy alternative to starch in food products, potentially assisting in controlling hyperglycaemia by impacting starch digestion. Consequently, this study evaluates the potential of Mahachanok mango peel (MHMP) pectin in glycaemic index (GI) reduction of meat products using simulated in vitro carbohydrate digestion. The physicochemical characteristics of MHMP pectin (MHMPP) were assessed using both FTIR and titration techniques, with microarray polymer profiling employed to analyse the glycan profile. In vitro simulations of carbohydrate digestion were carried out to assess its efficacy. Additionally, meatballs fortified with MHMPP were formulated, and the glycaemic index of the resultant products was ascertained. Microarray polymer profiling revealed distinct glycans in different fractions, including galactose, xyloglucan, and glycoprotein. Microwave extraction of pectin yielded 19.04 % MHMPP content with specific characteristics: L* (58.04), a* (12.80), b* (23.50), 6.81 % moisture content, and 78.63 % solubility. The degree of esterification at 55.73 %, an equivalent weight of 789.26 mg/moL, and a methoxyl content of 8.39 %, evidently identified MHMPP as high-methoxyl pectin. In a simulated system of MHMPP, content correlates with reduced digestion, supported by lowered values across the hydrolysis index (HI), rapidly available glucose (RAG), slowly available glucose (SAG), and expected glycaemic index (eGI). Higher MHMPP levels consistently exhibit a decreased impact on these digestive factors. In a simulated meat product system, increased MHMPP content corresponded to slower digestion rates, indicating its potential to retard digestion, as supported by HI, RAG, SAG, and eGI. The supplementation of 25 % pectin to meatballs is the most successful treatment, as it results in eGI, RAG, and SAG values of 8.71 (mg/gsample), 6.65 (mg/gsample), and 1.85 (mg/gsample), respectively. This study highlights the advantage of MHMP-derived dietary fibre in product development from industrial byproducts, aligning with sustainable development goals by reducing reliance on non-renewable materials.
AB - Pectin derived from mango peel biomass offers a noteworthy alternative to starch in food products, potentially assisting in controlling hyperglycaemia by impacting starch digestion. Consequently, this study evaluates the potential of Mahachanok mango peel (MHMP) pectin in glycaemic index (GI) reduction of meat products using simulated in vitro carbohydrate digestion. The physicochemical characteristics of MHMP pectin (MHMPP) were assessed using both FTIR and titration techniques, with microarray polymer profiling employed to analyse the glycan profile. In vitro simulations of carbohydrate digestion were carried out to assess its efficacy. Additionally, meatballs fortified with MHMPP were formulated, and the glycaemic index of the resultant products was ascertained. Microarray polymer profiling revealed distinct glycans in different fractions, including galactose, xyloglucan, and glycoprotein. Microwave extraction of pectin yielded 19.04 % MHMPP content with specific characteristics: L* (58.04), a* (12.80), b* (23.50), 6.81 % moisture content, and 78.63 % solubility. The degree of esterification at 55.73 %, an equivalent weight of 789.26 mg/moL, and a methoxyl content of 8.39 %, evidently identified MHMPP as high-methoxyl pectin. In a simulated system of MHMPP, content correlates with reduced digestion, supported by lowered values across the hydrolysis index (HI), rapidly available glucose (RAG), slowly available glucose (SAG), and expected glycaemic index (eGI). Higher MHMPP levels consistently exhibit a decreased impact on these digestive factors. In a simulated meat product system, increased MHMPP content corresponded to slower digestion rates, indicating its potential to retard digestion, as supported by HI, RAG, SAG, and eGI. The supplementation of 25 % pectin to meatballs is the most successful treatment, as it results in eGI, RAG, and SAG values of 8.71 (mg/gsample), 6.65 (mg/gsample), and 1.85 (mg/gsample), respectively. This study highlights the advantage of MHMP-derived dietary fibre in product development from industrial byproducts, aligning with sustainable development goals by reducing reliance on non-renewable materials.
KW - Biomass
KW - Dietary fibre
KW - Meatball
KW - Pectin
KW - Simulate digestion
U2 - 10.1016/j.jafr.2024.101304
DO - 10.1016/j.jafr.2024.101304
M3 - Article
SN - 2666-1543
VL - 18
JO - Journal of Agriculture and Food Research
JF - Journal of Agriculture and Food Research
M1 - 101304
ER -