Abstract
Realistic reasoning applications typically involve many interrelated variables and require the interpretation of data that is both heterogeneous in nature and affected by various types of uncertainty. Accordingly, in this paper we investigate the performance of valuation based algebra networks for reasoning in uncertain multivariate systems. Specifically, we consider networks built from two different approaches to modelling uncertainty: Possibility theory and Dempster-Shafer evidence theory. To compare these differing networks, we propose a new possibilistic counterpart to the uncertain implication rule that exists in evidential networks. Using the Captain's decision problem, we analyse the performance of these networks when estimating the number of days a ship will be delayed based on a mixture of uncertain knowledge. We demonstrate that the evidential network is more cautious to changes in uncertainty whereas the possibilistic network is more sensitive. This characteristic could allow the possibilistic network to be used to perform sensitivity analysis on a system.
Original language | English |
---|---|
Title of host publication | 2019 IEEE International Conference on Systems, Man and Cybernetics, SMC 2019 |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Pages | 2971-2977 |
Number of pages | 7 |
ISBN (Electronic) | 9781728145693 |
DOIs | |
Publication status | Published - Oct 2019 |
Event | 2019 IEEE International Conference on Systems, Man and Cybernetics, SMC 2019 - Bari, Italy Duration: 6 Oct 2019 → 9 Oct 2019 |
Publication series
Name | Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics |
---|---|
Volume | 2019-October |
ISSN (Print) | 1062-922X |
Conference
Conference | 2019 IEEE International Conference on Systems, Man and Cybernetics, SMC 2019 |
---|---|
Country/Territory | Italy |
City | Bari |
Period | 6/10/19 → 9/10/19 |
Bibliographical note
Funding Information:This research is supported by DST Group under the Research Agreement 'Classification decisions under uncertainty'.
Funding Information:
This research is supported by DST Group under the Research Agreement “Classification decisions under uncertainty”.
Publisher Copyright:
© 2019 IEEE.
Keywords
- Computational intelligence
- Dempster-Shafer
- Evidence Theory
- Possibility Theory
- Valuation Based Algebra
ASJC Scopus subject areas
- Electrical and Electronic Engineering
- Control and Systems Engineering
- Human-Computer Interaction