TY - JOUR
T1 - Plasmacytoid dendritic cell recruitment by immobilized CXCR3 ligands
AU - Kohrgruber, N
AU - Groger, M
AU - Meraner, P
AU - Kriehuber, E
AU - Petzelbauer, P
AU - Brandt, S
AU - Stingl, G
AU - Rot, Antal
AU - Maurer, D
PY - 2004/12/1
Y1 - 2004/12/1
N2 - Plasmacytoid dendritic cells (pDCs) recognize microbes, viruses in particular, and provide unique means of innate defense against them. The mechanism of pDC tissue recruitment remained enigmatic because the ligands of CXCR3, the cardinal chemokine receptor on pDCs, have failed to induce in vitro chemotaxis of pDCs in the absence of additional chemokines. In this study, we demonstrate that CXCR3 is sufficient to induce pDC migration, however, by a migratory mechanism that amalgamates the features of haptotaxis and chemorepulsion. To mediate "haptorepulsion" of pDCs, CXCR3 requires the encounter of its cognate ligands immobilized, optimally by heparan sulfate, in a form of a negative gradient. This is the first report of the absolute requirement of chemokine immobilization and presentation for its in vitro promigratory activity. The paradigmatic example of pDC haptorepulsion described here may represent a new pathophysiologically relevant migratory mechanism potentially used by other cells in response to other chemokines.
AB - Plasmacytoid dendritic cells (pDCs) recognize microbes, viruses in particular, and provide unique means of innate defense against them. The mechanism of pDC tissue recruitment remained enigmatic because the ligands of CXCR3, the cardinal chemokine receptor on pDCs, have failed to induce in vitro chemotaxis of pDCs in the absence of additional chemokines. In this study, we demonstrate that CXCR3 is sufficient to induce pDC migration, however, by a migratory mechanism that amalgamates the features of haptotaxis and chemorepulsion. To mediate "haptorepulsion" of pDCs, CXCR3 requires the encounter of its cognate ligands immobilized, optimally by heparan sulfate, in a form of a negative gradient. This is the first report of the absolute requirement of chemokine immobilization and presentation for its in vitro promigratory activity. The paradigmatic example of pDC haptorepulsion described here may represent a new pathophysiologically relevant migratory mechanism potentially used by other cells in response to other chemokines.
M3 - Article
C2 - 15557149
SN - 0022-1767
VL - 173
SP - 6592
EP - 6602
JO - Journal of Immunology
JF - Journal of Immunology
IS - 11
ER -