TY - JOUR
T1 - Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River
AU - Spencer, RGM
AU - Stubbins, A
AU - Hernes, PJ
AU - Baker, Andrew
AU - Mopper, K
AU - Aufdenkampe, AK
AU - Dyda, RY
AU - Mwamba, VL
AU - Mangangu, AM
AU - Wabakanghanzi, JN
AU - Six, J
PY - 2009/8/1
Y1 - 2009/8/1
N2 - Photochemical degradation of Congo River dissolved organic matter (DOM) was investigated to examine the fate of terrigenous DOM derived from tropical ecosystems. Tropical riverine DOM receives greater exposure to solar radiation, particularly in large river plumes discharging directly into the open ocean. Initial Congo River DOM exhibited dissolved organic carbon (DOC) concentration and compositional characteristics typical of organic rich blackwater systems. During a 57 day irradiation experiment, Congo River DOM was shown to be highly photoreactive with a decrease in DOC, chromophoric DOM (CDOM), lignin phenol concentrations (Sigma(8)) and carbon-normalized yields (Lambda(8)), equivalent to losses of similar to 45, 85-95, >95 and >95% of initial values, respectively, and a +3.1 parts per thousand enrichment of the delta C-13-DOC signature. The loss of Lambda(8) and enrichment of delta C-13-DOC during irradiation was strongly correlated (r = 0.99, p <0.01) indicating tight coupling between these biomarkers. Furthermore, the loss of CDOM absorbance was correlated to the loss of Lambda(8) (e.g., a(355) versus Lambda(8); r = 0.98, p <0.01) and delta C-13-DOC (e.g., a(355) versus delta C-13; r = 0.97, p <0.01), highlighting the potential of CDOM absorbance measurements for delineating the photochemical degradation of lignin and thus terrigenous DOM. It is apparent that these commonly used measurements for examination of terrigenous DOM in the oceans have a higher rate of photochemical decay than the bulk DOC pool. Further process-based studies are required to determine the selective removal rates of these biomarkers for advancement of our understanding of the fate of this material in the ocean.
AB - Photochemical degradation of Congo River dissolved organic matter (DOM) was investigated to examine the fate of terrigenous DOM derived from tropical ecosystems. Tropical riverine DOM receives greater exposure to solar radiation, particularly in large river plumes discharging directly into the open ocean. Initial Congo River DOM exhibited dissolved organic carbon (DOC) concentration and compositional characteristics typical of organic rich blackwater systems. During a 57 day irradiation experiment, Congo River DOM was shown to be highly photoreactive with a decrease in DOC, chromophoric DOM (CDOM), lignin phenol concentrations (Sigma(8)) and carbon-normalized yields (Lambda(8)), equivalent to losses of similar to 45, 85-95, >95 and >95% of initial values, respectively, and a +3.1 parts per thousand enrichment of the delta C-13-DOC signature. The loss of Lambda(8) and enrichment of delta C-13-DOC during irradiation was strongly correlated (r = 0.99, p <0.01) indicating tight coupling between these biomarkers. Furthermore, the loss of CDOM absorbance was correlated to the loss of Lambda(8) (e.g., a(355) versus Lambda(8); r = 0.98, p <0.01) and delta C-13-DOC (e.g., a(355) versus delta C-13; r = 0.97, p <0.01), highlighting the potential of CDOM absorbance measurements for delineating the photochemical degradation of lignin and thus terrigenous DOM. It is apparent that these commonly used measurements for examination of terrigenous DOM in the oceans have a higher rate of photochemical decay than the bulk DOC pool. Further process-based studies are required to determine the selective removal rates of these biomarkers for advancement of our understanding of the fate of this material in the ocean.
U2 - 10.1029/2009JG000968
DO - 10.1029/2009JG000968
M3 - Article
SN - 2156-2202
VL - 114
SP - G03010
JO - Journal of Geophysical Research
JF - Journal of Geophysical Research
ER -