TY - JOUR
T1 - Phase behavior of aqueous polyion-surfactant ion complex salts
T2 - effects of polyion charge density
AU - Norrman, Jens
AU - Lynch, Iseult
AU - Piculell, Lennart
PY - 2007/7/26
Y1 - 2007/7/26
N2 - The effect of varying the fraction of charged monomer units of the polyion in aqueous polyion-oppositely charged surfactant complex salts has been investigated. The complex salts used were based on cetyltrimethylammonium (C16TA+) with three different polymeric counterions: poly(acrylate) (PA-) or poly(acrylate) copolymerized with either dimethylacrylamide (PA-/DAM) or N-isopropylamide (PA-/NIPAM). The charge density of the polyion was varied by either adding poly(acrylic) acid (PAA) to the C16TAPA complex salt (annealed charges) or by varying the fraction of uncharged units in the C16TAPA/DAM or C16TAPA/NIPAM complex salts (quenched charges). The formed phases were studied visually between crossed polarizers and by small angle X-ray scattering (SAXS). Both types of complex salts (annealed and quenched) formed hexagonal phases at high fractions of charged monomers and low water contents. Upon increasing the water content, a cubic phase of the Pm3n space group was found. Upon further addition of water, a miscibility gap with the cubic phase in equilibrium with pure water was found. Decreasing the fraction of charged monomers in the annealed complex salt resulted in an increase of the curvature of the surfactant aggregates. Only at very low (<0.05) fractions of charged monomers did the packing of the surfactant aggregates lose long-range order, and eventually, the miscibility gap disappeared. For the quenched complex salts, the changes upon decreasing the fraction of charged monomers in the polyion were similar, but the loss of long-range order occurred at much higher fractions of charged monomers. The average surfactant aggregation number in the surfactant aggregates, which was similar for the annealed and quenched systems, decreased when the fraction of charged monomers was decreased.
AB - The effect of varying the fraction of charged monomer units of the polyion in aqueous polyion-oppositely charged surfactant complex salts has been investigated. The complex salts used were based on cetyltrimethylammonium (C16TA+) with three different polymeric counterions: poly(acrylate) (PA-) or poly(acrylate) copolymerized with either dimethylacrylamide (PA-/DAM) or N-isopropylamide (PA-/NIPAM). The charge density of the polyion was varied by either adding poly(acrylic) acid (PAA) to the C16TAPA complex salt (annealed charges) or by varying the fraction of uncharged units in the C16TAPA/DAM or C16TAPA/NIPAM complex salts (quenched charges). The formed phases were studied visually between crossed polarizers and by small angle X-ray scattering (SAXS). Both types of complex salts (annealed and quenched) formed hexagonal phases at high fractions of charged monomers and low water contents. Upon increasing the water content, a cubic phase of the Pm3n space group was found. Upon further addition of water, a miscibility gap with the cubic phase in equilibrium with pure water was found. Decreasing the fraction of charged monomers in the annealed complex salt resulted in an increase of the curvature of the surfactant aggregates. Only at very low (<0.05) fractions of charged monomers did the packing of the surfactant aggregates lose long-range order, and eventually, the miscibility gap disappeared. For the quenched complex salts, the changes upon decreasing the fraction of charged monomers in the polyion were similar, but the loss of long-range order occurred at much higher fractions of charged monomers. The average surfactant aggregation number in the surfactant aggregates, which was similar for the annealed and quenched systems, decreased when the fraction of charged monomers was decreased.
U2 - 10.1021/jp067303l
DO - 10.1021/jp067303l
M3 - Article
C2 - 17388470
SN - 1520-6106
VL - 111
SP - 8402
EP - 8410
JO - The Journal of Physical Chemistry Part B: Condensed Matter, Materials, Surfaces, Interfaces & Biophysical
JF - The Journal of Physical Chemistry Part B: Condensed Matter, Materials, Surfaces, Interfaces & Biophysical
IS - 29
ER -