TY - JOUR
T1 - Perturbed structural dynamics underlie inhibition and altered efflux of the multidrug resistance pump AcrB
AU - Reading, Eamonn
AU - Ahdash, Zainab
AU - Fais, Chiara
AU - Ricci, Vito
AU - Wang-Kan, Xuan
AU - Grimsey, Elizabeth
AU - Stone, Jack
AU - Malloci, Giuliano
AU - Lau, Andy M
AU - Findlay, Heather
AU - Konijnenberg, Albert
AU - Booth, Paula J
AU - Ruggerone, Paolo
AU - Vargiu, Attilio V
AU - Piddock, Laura J V
AU - Politis, Argyris
PY - 2020/11/4
Y1 - 2020/11/4
N2 - Resistance-nodulation-division efflux pumps play a key role in inherent and evolved multidrug resistance in bacteria. AcrB, a prototypical member of this protein family, extrudes a wide range of antimicrobial agents out of bacteria. Although high-resolution structures exist for AcrB, its conformational fluctuations and their putative role in function are largely unknown. Here, we determine these structural dynamics in the presence of substrates using hydrogen/deuterium exchange mass spectrometry, complemented by molecular dynamics simulations, and bacterial susceptibility studies. We show that an efflux pump inhibitor potentiates antibiotic activity by restraining drug-binding pocket dynamics, rather than preventing antibiotic binding. We also reveal that a drug-binding pocket substitution discovered within a multidrug resistant clinical isolate modifies the plasticity of the transport pathway, which could explain its altered substrate efflux. Our results provide insight into the molecular mechanism of drug export and inhibition of a major multidrug efflux pump and the directive role of its dynamics.
AB - Resistance-nodulation-division efflux pumps play a key role in inherent and evolved multidrug resistance in bacteria. AcrB, a prototypical member of this protein family, extrudes a wide range of antimicrobial agents out of bacteria. Although high-resolution structures exist for AcrB, its conformational fluctuations and their putative role in function are largely unknown. Here, we determine these structural dynamics in the presence of substrates using hydrogen/deuterium exchange mass spectrometry, complemented by molecular dynamics simulations, and bacterial susceptibility studies. We show that an efflux pump inhibitor potentiates antibiotic activity by restraining drug-binding pocket dynamics, rather than preventing antibiotic binding. We also reveal that a drug-binding pocket substitution discovered within a multidrug resistant clinical isolate modifies the plasticity of the transport pathway, which could explain its altered substrate efflux. Our results provide insight into the molecular mechanism of drug export and inhibition of a major multidrug efflux pump and the directive role of its dynamics.
UR - http://www.scopus.com/inward/record.url?scp=85094946246&partnerID=8YFLogxK
U2 - 10.1038/s41467-020-19397-2
DO - 10.1038/s41467-020-19397-2
M3 - Article
C2 - 33149158
SN - 2041-1723
VL - 11
SP - 5565
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 5565
ER -