TY - JOUR
T1 - Ozone exposure decreases the effect of a deep inhalation on forced expiratory flow in normal subjects
AU - Kjaergaard, SK
AU - Pedersen, OF
AU - Miller, Martin
AU - Rasmussen, TR
AU - Hansen, JC
AU - Molhave, L
PY - 2004/5/1
Y1 - 2004/5/1
N2 - Sixteen healthy nonsmoking subjects (7 women), 21-49 yr old, were exposed in a climate chamber to either clean air or 300 parts/billion ozone on 4 days for 5 h each day. Before each exposure, the subjects had been pretreated with either oxidants (fish oil) or antioxidants (multivitamins). The study design was double-blind crossover with randomized allocation to the exposure regime. Full and partial flow-volume curves were recorded in the morning and before and during a histamine provocation at the end of the day. Nasal cavity volume and inflammatory markers in nasal lavage fluid were also measured. Compared with air, ozone exposure decreased peak expiratory flow, forced expiratory volume in 1 s, and forced vital capacity (FVC), with no significant effect from the pretreatment regimens. Ozone decreased the ratio of maximal to partial flow at 40% FVC by 0.08 +/- 0.03 (mean +/- SE, analysis of variance: P = 0.018) and at 30% FVC by 0.10 +/- 0.05 (P = 0.070). Ozone exposure did not significantly increase bronchial responsiveness, but, after treatment with fish oil, partial flows decreased more than after vitamins during the histamine test, without changing the maximal-to-partial flow ratio. The decreased effect of a deep inhalation after ozone exposure can be explained by changes in airway hysteresis relative to parenchymal hysteresis, due either to ozone-induced airway inflammation or to less deep inspiration after ozone, not significantly influenced by multivitamins or fish oil.
AB - Sixteen healthy nonsmoking subjects (7 women), 21-49 yr old, were exposed in a climate chamber to either clean air or 300 parts/billion ozone on 4 days for 5 h each day. Before each exposure, the subjects had been pretreated with either oxidants (fish oil) or antioxidants (multivitamins). The study design was double-blind crossover with randomized allocation to the exposure regime. Full and partial flow-volume curves were recorded in the morning and before and during a histamine provocation at the end of the day. Nasal cavity volume and inflammatory markers in nasal lavage fluid were also measured. Compared with air, ozone exposure decreased peak expiratory flow, forced expiratory volume in 1 s, and forced vital capacity (FVC), with no significant effect from the pretreatment regimens. Ozone decreased the ratio of maximal to partial flow at 40% FVC by 0.08 +/- 0.03 (mean +/- SE, analysis of variance: P = 0.018) and at 30% FVC by 0.10 +/- 0.05 (P = 0.070). Ozone exposure did not significantly increase bronchial responsiveness, but, after treatment with fish oil, partial flows decreased more than after vitamins during the histamine test, without changing the maximal-to-partial flow ratio. The decreased effect of a deep inhalation after ozone exposure can be explained by changes in airway hysteresis relative to parenchymal hysteresis, due either to ozone-induced airway inflammation or to less deep inspiration after ozone, not significantly influenced by multivitamins or fish oil.
KW - airway inflammation
KW - bronchial hyperresponsiveness
KW - maximal-to-partial flow ratio
KW - spirometry
UR - http://www.scopus.com/inward/record.url?scp=2342483813&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00507.2003
DO - 10.1152/japplphysiol.00507.2003
M3 - Article
C2 - 14688031
SN - 1522-1601
VL - 96
SP - 1651
EP - 1657
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
ER -