Projects per year
Abstract
Learning Using privileged Information (LUPI), originally proposed in [1], is an advanced learning paradigm that aims to improve the supervised learning in the presence of additional (privileged) information, available during training, but not in the test phase. We present a novel metric learning methodology that is specially designed for incorporating privileged information in ordinal classification tasks, where there is a natural order on the set of classes. This is done by changing the global metric in the input space, based on distance relations revealed by the privileged information. The proposed model is formulated in the context of ordinal prototype based classification with metric adaptation. Unlike the existing nominal version of LUPI in prototype models [8], [9], in ordinal classifications the proposed LUPI model takes explicitly into account the class order information during the input space metric learning. Experiments demonstrate that incorporating privileged information via the proposed ordinal-based metric learning can improve the ordinal classification performance.
Original language | English |
---|---|
Title of host publication | Proceedings of the International Joint Conference on Neural Networks |
DOIs | |
Publication status | Published - 2013 |
Event | 2013 International Joint Conference on Neural Networks, IJCNN 2013 - Dallas, TX, United States Duration: 4 Aug 2013 → 9 Aug 2013 |
Conference
Conference | 2013 International Joint Conference on Neural Networks, IJCNN 2013 |
---|---|
Country/Territory | United States |
City | Dallas, TX |
Period | 4/08/13 → 9/08/13 |
ASJC Scopus subject areas
- Software
- Artificial Intelligence
Fingerprint
Dive into the research topics of 'Ordinal-based metric learning for learning using privileged information'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Unified probabilistic modelleing of adaptive spatial temporal structures in the human brain
Tino, P. (Principal Investigator) & Kourtzi, Z. (Co-Investigator)
Biotechnology & Biological Sciences Research Council
1/10/10 → 30/03/14
Project: Research Councils