Abstract
We investigate the challenge of multi-output learning, where the goal is to learn a vector-valued function based on a supervised data set. This includes a range of important problems in Machine Learning including multi-target regression, multi-class classification and multi-label classification. We begin our analysis by introducing the self-bounding Lipschitz condition for multioutput loss functions, which interpolates continuously between a classical Lipschitz condition and a multi-dimensional analogue of a smoothness condition. We then show that the self bounding Lipschitz condition gives rise to optimistic bounds for multi-output learning, which attain the minimax optimal rate up to logarithmic factors. The proof exploits local Rademacher complexity combined with a powerful minoration inequality due to Srebro, Sridharan and Tewari. As an application we derive a state-of-the-art generalisation bound for multi-class gradient boosting.
Original language | English |
---|---|
Title of host publication | 37th International Conference on Machine Learning (ICML 2020) |
Number of pages | 14 |
Publication status | Accepted/In press - 1 Jun 2020 |
Event | 37th International Conference on Machine Learning (ICML 2020) - Virtual Event Duration: 12 Jul 2020 → 18 Jul 2020 |
Conference
Conference | 37th International Conference on Machine Learning (ICML 2020) |
---|---|
City | Virtual Event |
Period | 12/07/20 → 18/07/20 |