Abstract
In multiobjective optimization, a good quality indicator is of great importance to the performance assessment of algorithms. This paper investigates the effectiveness of the widely-used hypervolume indicator, which is the only one found so far to strictly comply with the Pareto dominance. While hypervolume is of undisputed success to assess the quality of an approximation, it is sensitive to misleading cases, particularly for diversity assessment. To address this issue, this paper presents a modified hypervolume indicator based on linear projection for diversity evaluation. In addition to experimental studies to demonstrate the effectiveness of the proposed indicator, the indicator is introduced into the environmental selecction of an indicator-based multiobjective optimization evolutionary algorithm. Experiments show that the proposed indicator yields more evenly-distributed approximations than the original hypervolume indicator.
Original language | English |
---|---|
Title of host publication | 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016 |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
ISBN (Electronic) | 9781509042401 |
DOIs | |
Publication status | Published - 9 Feb 2017 |
Event | 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016 - Athens, Greece Duration: 6 Dec 2016 → 9 Dec 2016 |
Publication series
Name | 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016 |
---|
Conference
Conference | 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016 |
---|---|
Country/Territory | Greece |
City | Athens |
Period | 6/12/16 → 9/12/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems and Management
- Control and Optimization
- Artificial Intelligence