TY - JOUR
T1 - On the number of multilinear partitions and the computing capacity of multiple-valued multiple-threshold perceptrons
AU - Ngom, A
AU - Stojmenovic, Ivan
AU - Zunic, J
PY - 2003/5/1
Y1 - 2003/5/1
N2 - We introduce the concept of multilinear partition of a point set V/spl sub/R/sup n/ and the concept of multilinear separability of a function f:Vtwo head right arrowK={0,...,k-1}. Based on well-known relationships between linear partitions and minimal pairs, we derive formulae for the number of multilinear partitions of a point set in general position and of the set K(2). The (n,k,s)-perceptrons partition the input space V into s+1 regions with s parallel hyperplanes. We obtain results on the capacity of a single (n,k,s)-perceptron, respectively, for V subset R(n) in general position and for V=K(2). Finally, we describe a fast polynomial-time algorithm for counting the multilinear partitions of K(2).
AB - We introduce the concept of multilinear partition of a point set V/spl sub/R/sup n/ and the concept of multilinear separability of a function f:Vtwo head right arrowK={0,...,k-1}. Based on well-known relationships between linear partitions and minimal pairs, we derive formulae for the number of multilinear partitions of a point set in general position and of the set K(2). The (n,k,s)-perceptrons partition the input space V into s+1 regions with s parallel hyperplanes. We obtain results on the capacity of a single (n,k,s)-perceptron, respectively, for V subset R(n) in general position and for V=K(2). Finally, we describe a fast polynomial-time algorithm for counting the multilinear partitions of K(2).
U2 - 10.1109/TNN.2003.810598
DO - 10.1109/TNN.2003.810598
M3 - Article
C2 - 18238032
VL - 14
SP - 469
EP - 477
JO - IEEE Transactions on Neural Networks
JF - IEEE Transactions on Neural Networks
IS - 3
ER -