Abstract
Chromium, as a strong nitride-forming element, is widely regarded to be an “essential” ingredient for the formation of a nitrogen-expanded lattice in thermochemical nitrogen diffusion treatments of austenitic (stainless) steels. In this article, a proprietary “chrome-free” austenitic iron-nickel alloy, Invar® 36 (Fe-36Ni, in wt pct), is characterized after triode plasma nitriding (TPN) treatments at 400 °C to 450 °C and compared with a “stainless” austenitic counterpart RA 330® (Fe-19Cr-35Ni, in wt pct) treated under equivalent nitriding conditions. Cr does indeed appear to play a pivotal role in colossal nitrogen supersaturation (and hence anisotropic lattice expansion and superior surface hardening) of austenitic steel under low-temperature (≤ 450 °C) nitrogen diffusion. Nevertheless, this work reveals that nitrogen-induced lattice expansion occurs below the nitride-containing surface layer in Invar 36 alloy after TPN treatment, implying that Cr is not a necessity for the nitrogen-interstitial induced lattice expansion phenomenon to occur, also suggesting another type of γN.
Original language | English |
---|---|
Pages (from-to) | 436-447 |
Number of pages | 12 |
Journal | Metallurgical and Materials Transactions A |
Volume | 51 |
Issue number | 1 |
Early online date | 11 Nov 2019 |
DOIs | |
Publication status | Published - Jan 2020 |
ASJC Scopus subject areas
- Condensed Matter Physics
- Mechanics of Materials
- Metals and Alloys