Numerical Simulation of Sintering of DLP Printed Alumina Ceramics

Michele De Lisi, Nikolina Kovacev, Usama Attia, Khamis Essa

Research output: Contribution to journalArticlepeer-review

Abstract

Digital Light Processing (DLP) technology exhibits the capability of producing compo-nents with complex structures for a variety of technical applications. Postprocessing of additively printed ceramic components has been shown to be an important step in determining the final prod-uct resolution and mechanical qualities, particularly with regard to distortions and resultant den-sity. The goal of this research is to study the sintering process parameters to create a nearly fully dense, defect-free, ceramic component. A high-solid-loading alumina slurry with suitable rheolog-ical and photopolymerisable characteristics for DLP was created. TGA/DSC analysis was used to estimate thermal debinding parameters. The sintering process of the debound parts was studied by employing a numerical model based on thermo-viscoelasticity theory to describe the sintering pro-cess. The validated Finite Element Modelling (FEM) code was capable of predicting shrinkage and relative density changes during the sintering cycle, as well as providing meaningful information on the final shape. Archimedes’ principle and scanning electron microscope (SEM) were used to char-acterise the sintered parts and validate the numerical model. Samples with high relative density (>98.5%) were produced and numerical data showed close matches for predicted shrinkages and relative densities, with less than 2% mismatch between experimental results and simulations. The current model may allow to effectively predict the properties of alumina ceramics produced via DLP and tailor them for specific applications.
Original languageEnglish
JournalAerospace
Publication statusAccepted/In press - 22 Jun 2022

Keywords

  • additive manufacturing
  • DLP
  • alumina
  • sintering
  • numerical modelling

Fingerprint

Dive into the research topics of 'Numerical Simulation of Sintering of DLP Printed Alumina Ceramics'. Together they form a unique fingerprint.

Cite this