Noncovalently connected micelles, nanoparticles, and metal-functionalized nanocages using supramolecular self-assembly

Adam O. Moughton, Rachel K. O'Reilly

Research output: Contribution to journalArticlepeer-review

143 Citations (Scopus)

Abstract

An SCS “pincer”-based nitroxide-mediated polymerization (NMP) initiator has been synthesized and utilized to polymerize tert-butyl acrylate (tBuA), affording polymers with control over molecular weight and polydispersity. 1H NMR spectroscopy indicates that the sulfur end group remains intact after deprotection of the PtBuA segment to yield a poly(acrylic acid) segment. The hydrophilic polymer-tethered SCS ligand has been demonstrated to bind to palladium(II), as characterized by a distinctive Pd−C shift in the 13C NMR spectrum and a diagnostic metal-to-ligand charge-transfer band in the UV−vis spectrum. A pyridine-functionalized NMP initiator has also been synthesized and used to initiate the NMP of styrene with good control and end group fidelity. The binding of these two chain end ligand-functionalized polymers to form an amphiphilic metallosupramolecular diblock copolymer is facile, as indicated through extended 1H and 13C NMR studies. The self-assembly of this diblock into well-defined, monodisperse, noncovalently connected micelles (NCCMs) is reported and has been characterized by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. The NCCMs were selectively stabilized throughout the shell layer to produce stable noncovalently connected nanoparticles, resulting in a distinctive reduction in the solution hydrodynamic radius and zeta potential compared to those of the precursor micelle. The hydrophobic core domain was then readily removed via dialysis at low pH to afford a hollow polymeric nanocage with well-defined interior functionality. A significant increase in the solution hydrodynamic radius and shape by AFM analysis was observed upon removal of the core, and the hydrophilic nanocages were shown to be ineffective in the sequestration of hydrophobic dye molecules relative to the parent nanoparticle.
Original languageEnglish
Pages (from-to)8714-8725
JournalJournal of the American Chemical Society
Volume130
Issue number27
DOIs
Publication statusPublished - 13 Jun 2008

Fingerprint

Dive into the research topics of 'Noncovalently connected micelles, nanoparticles, and metal-functionalized nanocages using supramolecular self-assembly'. Together they form a unique fingerprint.

Cite this