New Functional Handle for Use as a Self-Reporting Contrast and Delivery Agent in Nanomedicine

Mathew P. Robin, Anne B. Mabire, Joanne C. Damborsky, Elizabeth S. Thom, Ursula H. Winzer-Serhan, Jeffery E. Raymond, Rachel K. O'Reilly

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)


The synthesis and photophysical characterization of a chromophore-bridged block copolymer system is presented. This system is based on a dithiomaleimide (DTM) functional group as a highly emissive functionality which can readily be incorporated into polymeric scaffolds. A key advantage of this new reporter group is its versatile chemistry, ease of further functionalization, and notably small size, which allows for ready incorporation without affecting or disrupting the self-assembly process critical to the formation of core–shell polymeric contrast and drug delivery agents. We demonstrate the potential of this functionality with a diblock system which has been shown to be appropriate for micellization and, when in the micellar state, does not self-quench. The block copolymer is shown to be significantly more emissive than the lone dye, with a concentration-independent emission and anisotropy profile from 1.5 mM to 0.15 μM. An emission lifetime and anisotropy decay comparison of the block copolymer to its micelle displays that time-domain fluorescence lifetime imaging (FLIM) is able to rapidly resolve differences in the supramolecular state of this block–dye–block polymer system. Furthermore, the ability to resolve these differences in the supramolecular state means that the DTM micelles are capable of self-reporting when disassembly occurs, simply by monitoring with FLIM. We demonstrate the great potential for in vitro applications that this system provides by using FLIM to observe micelle disassembly in different vascular components of rat hippocampal tissue. In total this system represents a new class of in-chain emitter which is appropriate for application in quantitative imaging and the tracking of particle degradation/disassembly events in biological environments.
Original languageEnglish
Pages (from-to)9518-9524
JournalJournal of the American Chemical Society
Issue number25
Publication statusPublished - 13 Jun 2013


Dive into the research topics of 'New Functional Handle for Use as a Self-Reporting Contrast and Delivery Agent in Nanomedicine'. Together they form a unique fingerprint.

Cite this