TY - JOUR
T1 - Neural correlates of consciousness in patients who have emerged from a minimally conscious state
T2 - A cross-sectional multimodal imaging study
AU - Di Perri, Carol
AU - Bahri, Mohamed Ali
AU - Amico, Enrico
AU - Thibaut, Aurore
AU - Heine, Lizette
AU - Antonopoulos, Georgios
AU - Charland-Verville, Vanessa
AU - Wannez, Sarah
AU - Gomez, Francisco
AU - Hustinx, Roland
AU - Tshibanda, Luaba
AU - Demertzi, Athena
AU - Soddu, Andrea
AU - Laureys, Steven
N1 - Publisher Copyright:
© 2016 Elsevier Ltd.
PY - 2016/7
Y1 - 2016/7
N2 - Background: Between pathologically impaired consciousness and normal consciousness exists a scarcely researched transition zone, referred to as emergence from minimally conscious state, in which patients regain the capacity for functional communication, object use, or both. We investigated neural correlates of consciousness in these patients compared with patients with disorders of consciousness and healthy controls, by multimodal imaging. Methods: In this cross-sectional, multimodal imaging study, patients with unresponsive wakefulness syndrome, patients in a minimally conscious state, and patients who had emerged from a minimally conscious state, diagnosed with the Coma Recovery Scale-Revised, were recruited from the neurology department of the Centre Hospitalier Universitaire de Liège, Belgium. Key exclusion criteria were neuroimaging examination in an acute state, sedation or anaesthesia during scanning, large focal brain damage, motion parameters of more than 3 mm in translation and 3° in rotation, and suboptimal segmentation and normalisation. We acquired resting state functional and structural MRI data and 18F-fluorodeoxyglucose (FDG) PET data; we used seed-based functional MRI (fMRI) analysis to investigate positive default mode network connectivity (within-network correlations) and negative default mode network connectivity (between-network anticorrelations). We correlated FDG-PET brain metabolism with fMRI connectivity. We used voxel-based morphometry to test the effect of anatomical deformations on functional connectivity. Findings: We recruited a convenience sample of 58 patients (21 [36%] with unresponsive wakefulness syndrome, 24 [41%] in a minimally conscious state, and 13 [22%] who had emerged from a minimally conscious state) and 35 healthy controls between Oct 1, 2009, and Oct 31, 2014. We detected consciousness-level-dependent increases (from unresponsive wakefulness syndrome, minimally conscious state, emergence from minimally conscious state, to healthy controls) for positive and negative default mode network connectivity, brain metabolism, and grey matter volume (p<0·05 false discovery rate corrected for multiple comparisons). Positive default mode network connectivity differed between patients and controls but not among patient groups (F test p<0·0001). Negative default mode network connectivity was only detected in healthy controls and in those who had emerged from a minimally conscious state; patients with unresponsive wakefulness syndrome or in a minimally conscious state showed pathological between-network positive connectivity (hyperconnectivity; F test p<0·0001). Brain metabolism correlated with positive default mode network connectivity (Spearman's r=0·50 [95% CI 0·26 to 0·61]; p<0·0001) and negative default mode network connectivity (Spearman's r=-0·52 [-0·35 to -0·67); p<0·0001). Grey matter volume did not differ between the studied groups (F test p=0·06). Interpretation: Partial preservation of between-network anticorrelations, which are seemingly of neuronal origin and cannot be solely explained by morphological deformations, characterise patients who have emerged from a minimally conscious state. Conversely, patients with disorders of consciousness show pathological between-network correlations. Apart from a deeper understanding of the neural correlates of consciousness, these findings have clinical implications and might be particularly relevant for outcome prediction and could inspire new therapeutic options. Funding: Belgian National Funds for Scientific Research (FNRS), European Commission, Natural Sciences and Engineering Research Council of Canada, James McDonnell Foundation, European Space Agency, Mind Science Foundation, French Speaking Community Concerted Research Action, Fondazione Europea di Ricerca Biomedica, University and University Hospital of Liège (Liège, Belgium), and University of Western Ontario (London, ON, Canada).
AB - Background: Between pathologically impaired consciousness and normal consciousness exists a scarcely researched transition zone, referred to as emergence from minimally conscious state, in which patients regain the capacity for functional communication, object use, or both. We investigated neural correlates of consciousness in these patients compared with patients with disorders of consciousness and healthy controls, by multimodal imaging. Methods: In this cross-sectional, multimodal imaging study, patients with unresponsive wakefulness syndrome, patients in a minimally conscious state, and patients who had emerged from a minimally conscious state, diagnosed with the Coma Recovery Scale-Revised, were recruited from the neurology department of the Centre Hospitalier Universitaire de Liège, Belgium. Key exclusion criteria were neuroimaging examination in an acute state, sedation or anaesthesia during scanning, large focal brain damage, motion parameters of more than 3 mm in translation and 3° in rotation, and suboptimal segmentation and normalisation. We acquired resting state functional and structural MRI data and 18F-fluorodeoxyglucose (FDG) PET data; we used seed-based functional MRI (fMRI) analysis to investigate positive default mode network connectivity (within-network correlations) and negative default mode network connectivity (between-network anticorrelations). We correlated FDG-PET brain metabolism with fMRI connectivity. We used voxel-based morphometry to test the effect of anatomical deformations on functional connectivity. Findings: We recruited a convenience sample of 58 patients (21 [36%] with unresponsive wakefulness syndrome, 24 [41%] in a minimally conscious state, and 13 [22%] who had emerged from a minimally conscious state) and 35 healthy controls between Oct 1, 2009, and Oct 31, 2014. We detected consciousness-level-dependent increases (from unresponsive wakefulness syndrome, minimally conscious state, emergence from minimally conscious state, to healthy controls) for positive and negative default mode network connectivity, brain metabolism, and grey matter volume (p<0·05 false discovery rate corrected for multiple comparisons). Positive default mode network connectivity differed between patients and controls but not among patient groups (F test p<0·0001). Negative default mode network connectivity was only detected in healthy controls and in those who had emerged from a minimally conscious state; patients with unresponsive wakefulness syndrome or in a minimally conscious state showed pathological between-network positive connectivity (hyperconnectivity; F test p<0·0001). Brain metabolism correlated with positive default mode network connectivity (Spearman's r=0·50 [95% CI 0·26 to 0·61]; p<0·0001) and negative default mode network connectivity (Spearman's r=-0·52 [-0·35 to -0·67); p<0·0001). Grey matter volume did not differ between the studied groups (F test p=0·06). Interpretation: Partial preservation of between-network anticorrelations, which are seemingly of neuronal origin and cannot be solely explained by morphological deformations, characterise patients who have emerged from a minimally conscious state. Conversely, patients with disorders of consciousness show pathological between-network correlations. Apart from a deeper understanding of the neural correlates of consciousness, these findings have clinical implications and might be particularly relevant for outcome prediction and could inspire new therapeutic options. Funding: Belgian National Funds for Scientific Research (FNRS), European Commission, Natural Sciences and Engineering Research Council of Canada, James McDonnell Foundation, European Space Agency, Mind Science Foundation, French Speaking Community Concerted Research Action, Fondazione Europea di Ricerca Biomedica, University and University Hospital of Liège (Liège, Belgium), and University of Western Ontario (London, ON, Canada).
UR - http://www.scopus.com/inward/record.url?scp=84964608657&partnerID=8YFLogxK
U2 - 10.1016/S1474-4422(16)00111-3
DO - 10.1016/S1474-4422(16)00111-3
M3 - Article
C2 - 27131917
AN - SCOPUS:84964608657
SN - 1474-4422
VL - 15
SP - 830
EP - 842
JO - The Lancet Neurology
JF - The Lancet Neurology
IS - 8
ER -