Abstract
Background-Preeclampsia is characterized clinically by hypertension and proteinuria. Soluble Flt-1 (sFlt-1; also known as soluble vascular endothelial growth factor receptor-1 [VEGFR-1]) and soluble endoglin (sEng) are elevated in preeclampsia, and their administration to pregnant rats elicits preeclampsia-like symptoms. Heme oxygenase-1 (HO-1) and its metabolite carbon monoxide (CO) exert protective effects against oxidative stimuli. Thus, we hypothesized that HO-1 upregulation may offer protection against preeclampsia by inhibiting sFlt-1 and sEng release. Methods and Results-Preeclamptic villous explants secreted high levels of sFlt-1 and sEng. Adenoviral overexpression of HO-1 in endothelial cells inhibited VEGF-mediated sFlt-1 release and interferon-gamma-and tumor necrosis factor-alpha-induced sEng release, whereas HO-1 inhibition potentiated sFlt-1 and sEng production from endothelial cells and placental villous explants. Consistent with these findings, mice lacking HO-1 produced higher levels of sFlt-1 and sEng compared with wild-type mice. Using selective ligands (VEGF-E and placental growth factor) and a receptor-specific inhibitor (SU-1498), we demonstrated that VEGF-induced sFlt-1 release was VEGFR-2 dependent. Furthermore, CO-releasing molecule-2 (CORM-2) or CO decreased sFlt-1 release and inhibited VEGFR-2 phosphorylation. Treatment of endothelial cells with statins upregulated HO-1 and inhibited the release of sFlt-1, whereas vitamins C and E had no effect. Conclusions-The present study demonstrates that the HO-1/CO pathway inhibits sFlt-1 and sEng release, providing compelling evidence for a protective role of HO-1 in pregnancy, and identifies HO-1 as a novel target for the treatment of preeclampsia.
Original language | English |
---|---|
Pages (from-to) | 1789-97 |
Number of pages | 9 |
Journal | Circulation |
Volume | 115(13) |
Early online date | 19 Mar 2007 |
DOIs | |
Publication status | Published - 19 Mar 2007 |
Keywords
- endothelium
- endothelium-derived factors
- pregnancy
- statins
- heme oxygenase-1
- angiogenesis
- preeclampsia