Negative BOLD responses to epileptic spikes

E Kobayashi, Andrew Bagshaw, C Grova

Research output: Contribution to journalArticle

131 Citations (Scopus)


Simultaneous electroencephalogram/functional magnetic resonance imaging (EEG-fMRI) during interictal epileptiform discharges can result in positive (activation) and negative (deactivation) changes in the blood oxygenation level-dependent (BOLD) signal. Activation probably reflects increased neuronal activity and energy demand, but deactivation is more difficult to explain. Our objective was to evaluate the occurrence and significance of deactivations related to epileptiform discharges in epilepsy. We reviewed all EEG-fMRI studies from our database, identified those with robust responses (P = 0.01, with > or =5 contiguous voxels with a |t| > 3.1, including > or =1 voxel at |t| > 5.0), and divided them into three groups: activation (A = 8), deactivation (D = 9), and both responses (AD = 43). We correlated responses with discharge type and location and evaluated their spatial relationship with regions involved in the "default" brain state (Raichle et al. [2001]: Proc Natl Acad Sci 98:676-682]. Deactivations were seen in 52/60 studies (AD + D): 26 related to focal discharges, 12 bilateral, and 14 generalized. Deactivations were usually distant from anatomical areas related to the discharges and more frequently related to polyspike- and spike-and-slow waves than to spikes. The "default" pattern occurred in 10/43 AD studies, often associated with bursts of generalized discharges. In conclusion, deactivations are frequent, mostly with concomitant activation, for focal and generalized discharges. Discharges followed by a slow wave are more likely to result in deactivation, suggesting neuronal inhibition as the underlying phenomenon. Involvement of the "default" areas, related to bursts of generalized discharges, provides evidence of a subclinical effect of the discharges, temporarily suspending normal brain function in the resting state.
Original languageEnglish
Pages (from-to)488-497
Number of pages10
JournalHuman Brain Mapping
Issue number6
Publication statusPublished - 1 Jun 2006


Dive into the research topics of 'Negative BOLD responses to epileptic spikes'. Together they form a unique fingerprint.

Cite this