Projects per year
Abstract
Direct electron beam writing in nanoparticle films is employed to create nanoscale wires between prepatterned gold electrodes on SiO(2)/Si wafers. Characterization of these nanowires using AFM, SEM, and EDX reveals a core/sheath morphology, where a gold-rich core is surrounded by a sheath which is mainly of carbon. Z-contrast STEM images indicate that the central core consists of a distribution of metal cores in a carbon network. The results suggest that the nanoparticle network is created through cross-linking of the ligands of adjacent particles. The high resistivities obtained in conductivity measurements are consistent with this picture. The work illustrates the ability to generate patterned nanoparticle arrays which can be addressed electrically.
Original language | English |
---|---|
Pages (from-to) | 1556-1559 |
Number of pages | 4 |
Journal | Langmuir |
Volume | 21 |
DOIs | |
Publication status | Published - 1 Jan 2005 |
Fingerprint
Dive into the research topics of 'Nanoparticle arrays patterned by electron beam writing: structure, composition and electrical properties'. Together they form a unique fingerprint.Projects
- 1 Finished
-
PLATFORM: Nanostructured Surfaces
Palmer, R. (Principal Investigator), Guo, Q. (Co-Investigator), Harrison, R. (Co-Investigator), Heath, J. (Co-Investigator), Jones, I. (Co-Investigator), Li, Z. (Co-Investigator), Moss, P. (Co-Investigator) & Robinson, A. (Co-Investigator)
Engineering & Physical Science Research Council
1/12/02 → 31/05/07
Project: Research Councils