TY - JOUR
T1 - NanoBioAccumulate
T2 - Modelling the uptake and bioaccumulation of nanomaterials in soil and aquatic invertebrates via the Enalos DIAGONAL Cloud Platform
AU - Mintis, Dimitris G.
AU - Cheimarios, Nikolaos
AU - Tsoumanis, Andreas
AU - Papadiamantis, Anastasios G.
AU - van den Brink, Nico W.
AU - van Lingen, Henk J.
AU - Melagraki, Georgia
AU - Lynch, Iseult
AU - Afantitis, Antreas
PY - 2024/12
Y1 - 2024/12
N2 - NanoBioAccumulate is a free-to-use web-based tool hosted on the Enalos DIAGONAL Cloud Platform (https://www.enaloscloud.novamechanics.com/diagonal/pbpk/) that provides users with the capability to model and predict the uptake and bioaccumulation of nanomaterials (NMs) by soil and aquatic invertebrates using two common first-order one-compartment biokinetic models. NanoBioAccumulate offers an approach for comprehensively analyzing the kinetics of different forms of NMs via a nonlinear fitting feature, integrating them with environmental fate models, and considering important physiological processes. NanoBioAccumulate overcomes the constraint of requiring prior knowledge of kinetic rate constants associated with the biokinetic models and eliminates the need for external statistical analysis software as it quantifies the kinetic rate constants and other constants through the application of nonlinear regression, using user-provided experimental data. Furthermore, NanoBioAccumulate incorporates statistical analysis measures like the adjusted R-squared and the bias-corrected Akaike information criterion, allowing for assessment of the goodness-of-fit of the two different biokinetic models, assisting in the identification of the best-performing model for a specific nanoform and its uptake kinetics by a specific invertebrate. The tool also includes model scenarios, retrieved from literature, which involve examining the exposure of soil and aquatic invertebrates to various types of NMs such as TiO2, SiO2, C60, graphene, graphene oxide (GO), Au, Ag and its ionic control AgNO3. These model scenarios aim to enhance understanding of the uptake and elimination rates exhibited by different NM-species. NanoBioAccumulate features advanced integration capabilities, enabled by an extensive Application Programming Interface (API). This functionality promotes efficient data exchange and interoperability with other software and web applications, significantly expanding its utility in research, regulatory risk assessment and environmental surveillance and monitoring contexts. The inclusion of a user-friendly Graphical User Interface (GUI) in NanoBioAccumulate greatly improves the overall user experience by simplifying complex tasks and eliminating the need for programming proficiency, thereby expanding the tool's applicability to a diverse range of users across various fields such as environmental research, monitoring, and regulation.
AB - NanoBioAccumulate is a free-to-use web-based tool hosted on the Enalos DIAGONAL Cloud Platform (https://www.enaloscloud.novamechanics.com/diagonal/pbpk/) that provides users with the capability to model and predict the uptake and bioaccumulation of nanomaterials (NMs) by soil and aquatic invertebrates using two common first-order one-compartment biokinetic models. NanoBioAccumulate offers an approach for comprehensively analyzing the kinetics of different forms of NMs via a nonlinear fitting feature, integrating them with environmental fate models, and considering important physiological processes. NanoBioAccumulate overcomes the constraint of requiring prior knowledge of kinetic rate constants associated with the biokinetic models and eliminates the need for external statistical analysis software as it quantifies the kinetic rate constants and other constants through the application of nonlinear regression, using user-provided experimental data. Furthermore, NanoBioAccumulate incorporates statistical analysis measures like the adjusted R-squared and the bias-corrected Akaike information criterion, allowing for assessment of the goodness-of-fit of the two different biokinetic models, assisting in the identification of the best-performing model for a specific nanoform and its uptake kinetics by a specific invertebrate. The tool also includes model scenarios, retrieved from literature, which involve examining the exposure of soil and aquatic invertebrates to various types of NMs such as TiO2, SiO2, C60, graphene, graphene oxide (GO), Au, Ag and its ionic control AgNO3. These model scenarios aim to enhance understanding of the uptake and elimination rates exhibited by different NM-species. NanoBioAccumulate features advanced integration capabilities, enabled by an extensive Application Programming Interface (API). This functionality promotes efficient data exchange and interoperability with other software and web applications, significantly expanding its utility in research, regulatory risk assessment and environmental surveillance and monitoring contexts. The inclusion of a user-friendly Graphical User Interface (GUI) in NanoBioAccumulate greatly improves the overall user experience by simplifying complex tasks and eliminating the need for programming proficiency, thereby expanding the tool's applicability to a diverse range of users across various fields such as environmental research, monitoring, and regulation.
KW - Nanomaterials
KW - Nanomaterial bioaccumulation
KW - Biokinetic models
KW - Invertebrates
KW - Web application
KW - Enalos diagonal cloud platform
KW - Nonlinear regression
KW - Genetic algorithm
U2 - 10.1016/j.csbj.2024.09.028
DO - 10.1016/j.csbj.2024.09.028
M3 - Article
SN - 2001-0370
VL - 25
SP - 243
EP - 255
JO - Computational and Structural Biotechnology Journal
JF - Computational and Structural Biotechnology Journal
ER -