NanoBioAccumulate: Modelling the uptake and bioaccumulation of nanomaterials in soil and aquatic invertebrates via the Enalos DIAGONAL Cloud Platform

Dimitris G. Mintis, Nikolaos Cheimarios, Andreas Tsoumanis, Anastasios G. Papadiamantis, Nico W. van den Brink, Henk J. van Lingen, Georgia Melagraki, Iseult Lynch, Antreas Afantitis*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Downloads (Pure)

Abstract

NanoBioAccumulate is a free-to-use web-based tool hosted on the Enalos DIAGONAL Cloud Platform (https://www.enaloscloud.novamechanics.com/diagonal/pbpk/) that provides users with the capability to model and predict the uptake and bioaccumulation of nanomaterials (NMs) by soil and aquatic invertebrates using two common first-order one-compartment biokinetic models. NanoBioAccumulate offers an approach for comprehensively analyzing the kinetics of different forms of NMs via a nonlinear fitting feature, integrating them with environmental fate models, and considering important physiological processes. NanoBioAccumulate overcomes the constraint of requiring prior knowledge of kinetic rate constants associated with the biokinetic models and eliminates the need for external statistical analysis software as it quantifies the kinetic rate constants and other constants through the application of nonlinear regression, using user-provided experimental data. Furthermore, NanoBioAccumulate incorporates statistical analysis measures like the adjusted R-squared and the bias-corrected Akaike information criterion, allowing for assessment of the goodness-of-fit of the two different biokinetic models, assisting in the identification of the best-performing model for a specific nanoform and its uptake kinetics by a specific invertebrate. The tool also includes model scenarios, retrieved from literature, which involve examining the exposure of soil and aquatic invertebrates to various types of NMs such as TiO2, SiO2, C60, graphene, graphene oxide (GO), Au, Ag and its ionic control AgNO3. These model scenarios aim to enhance understanding of the uptake and elimination rates exhibited by different NM-species. NanoBioAccumulate features advanced integration capabilities, enabled by an extensive Application Programming Interface (API). This functionality promotes efficient data exchange and interoperability with other software and web applications, significantly expanding its utility in research, regulatory risk assessment and environmental surveillance and monitoring contexts. The inclusion of a user-friendly Graphical User Interface (GUI) in NanoBioAccumulate greatly improves the overall user experience by simplifying complex tasks and eliminating the need for programming proficiency, thereby expanding the tool's applicability to a diverse range of users across various fields such as environmental research, monitoring, and regulation.
Original languageEnglish
Pages (from-to)243-255
Number of pages13
JournalComputational and Structural Biotechnology Journal
Volume25
Early online date17 Oct 2024
DOIs
Publication statusPublished - Dec 2024

Keywords

  • Nanomaterials
  • Nanomaterial bioaccumulation
  • Biokinetic models
  • Invertebrates
  • Web application
  • Enalos diagonal cloud platform
  • Nonlinear regression
  • Genetic algorithm

Fingerprint

Dive into the research topics of 'NanoBioAccumulate: Modelling the uptake and bioaccumulation of nanomaterials in soil and aquatic invertebrates via the Enalos DIAGONAL Cloud Platform'. Together they form a unique fingerprint.

Cite this