TY - JOUR
T1 - Muscle afferent contributions to the cardiovascular response to isometric exercise
AU - Fisher, James
AU - White, Michael
PY - 2004/9/13
Y1 - 2004/9/13
N2 - The cardiovascular response to isometric exercise is governed by both central and peripheral mechanisms. Both metabolic and mechanical stresses on the exercising skeletal muscle produce cardiovascular change, yet it is often overlooked that the afferent signal arising from the muscle can be modified by factors other than exercise intensity. This review discusses research revealing that muscle fibre type, muscle mass and training status are important factors in modifying this peripheral feedback from the active muscles. Studies in both animals and humans have shown that the pressor response resulting from exercise of muscle with a faster contractile character and isomyosin content is greater than that from a muscle of slower contractile character. Athletic groups participating in training programmes that place a high anaerobic load on skeletal muscle groups show attenuated muscle afferent feedback. Similarly, longitudinal studies have shown that specific local muscle training also blunts the pressor response to isometric exercise. Thus it appears that training may decrease the metabolic stimulation of muscle afferents and in some instances chronic exposure to the products of anaerobic metabolism may blunt the sensitivity of the muscle metaboreflex. There may be surprising parallels between the local muscle conditions induced in athletes training for longer sprint events (e.g. 400 m) and by the low-flow conditions in, for example, the muscles of chronic heart failure patients. Whether their similar attenuations in muscle afferent feedback during exercise are due to decreased metabolite accumulation or to a desensitization of the muscle afferents is not yet known.
AB - The cardiovascular response to isometric exercise is governed by both central and peripheral mechanisms. Both metabolic and mechanical stresses on the exercising skeletal muscle produce cardiovascular change, yet it is often overlooked that the afferent signal arising from the muscle can be modified by factors other than exercise intensity. This review discusses research revealing that muscle fibre type, muscle mass and training status are important factors in modifying this peripheral feedback from the active muscles. Studies in both animals and humans have shown that the pressor response resulting from exercise of muscle with a faster contractile character and isomyosin content is greater than that from a muscle of slower contractile character. Athletic groups participating in training programmes that place a high anaerobic load on skeletal muscle groups show attenuated muscle afferent feedback. Similarly, longitudinal studies have shown that specific local muscle training also blunts the pressor response to isometric exercise. Thus it appears that training may decrease the metabolic stimulation of muscle afferents and in some instances chronic exposure to the products of anaerobic metabolism may blunt the sensitivity of the muscle metaboreflex. There may be surprising parallels between the local muscle conditions induced in athletes training for longer sprint events (e.g. 400 m) and by the low-flow conditions in, for example, the muscles of chronic heart failure patients. Whether their similar attenuations in muscle afferent feedback during exercise are due to decreased metabolite accumulation or to a desensitization of the muscle afferents is not yet known.
UR - http://www.scopus.com/inward/record.url?scp=8844270175&partnerID=8YFLogxK
U2 - 10.1113/expphysiol.2004.028639
DO - 10.1113/expphysiol.2004.028639
M3 - Article
C2 - 15364880
SN - 0958-0670
VL - 89
SP - 639
EP - 646
JO - Experimental Physiology
JF - Experimental Physiology
IS - 6
ER -