Multivariate meta-analysis using individual participant data

Richard Riley, M. J. Price, D. Jackson, M. Wardle, F. Gueyffier, J. Wang, J. A. Staessen, I. R. White

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)
298 Downloads (Pure)


When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment–covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models.
Original languageEnglish
Pages (from-to)157–174
JournalResearch Synthesis Methods
Issue number2
Early online date21 Nov 2014
Publication statusPublished - 22 Jun 2015


  • multivariate meta-analysis
  • bivariate meta-analysis
  • multiple outcomes
  • correlation
  • individual participant data (IPD)
  • individual patient data


Dive into the research topics of 'Multivariate meta-analysis using individual participant data'. Together they form a unique fingerprint.

Cite this