Abstract
A facile and cost-effective approach for the preparation of a surface-enhanced Raman spectroscopy (SERS) substrate through constructing silver nanoparticle/3-aminopropyltriethoxysilane/agarose films (Ag NPs/APTES/Agar film) on various solid supports is described. The SERS performance of the substrate was systematically investigated, revealing a maximum SERS intensity with four layers of the Ag NP deposition. The enhancement factor of the developed substrate was calculated as 1.5 × 10 7 using rhodamine 6G (R6G) as the probe molecule, and the reproducibility of the SERS signals was established. A high throughput screening platform was designed, manufactured and implemented which utilised the ability to cast agarose to assemble arrays. Quantitative analysis of 4-aminobenzoic acid (4-ABA) and 4-aminothiophenol (4-ATP) was achieved over a ∼0.5 nM-0.1 μM range.
Original language | English |
---|---|
Pages (from-to) | 137-142 |
Number of pages | 6 |
Journal | Nanoscale |
Volume | 4 |
Issue number | 1 |
DOIs | |
Publication status | Published - 7 Jan 2012 |
ASJC Scopus subject areas
- General Materials Science