TY - JOUR
T1 - MultilayerPy (v1.0)
T2 - a Python-based framework for building, running and optimising kinetic multi-layer models of aerosols and films
AU - Milsom, Adam
AU - Lees, Amy
AU - Squires, Adam
AU - Pfrang, Christian
PY - 2022/9/22
Y1 - 2022/9/22
N2 - Kinetic multi-layer models of aerosols and films have become the state-of-the-art method of describing complex aerosol processes at the particle and film level. We present MultilayerPy: an open-source framework for building, running and optimising kinetic multi-layer models – namely the kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB) and the kinetic multi-layer model of gas–particle interactions in aerosols and clouds (KM-GAP). The modular nature of this package allows the user to iterate through various reaction schemes, diffusion regimes and experimental conditions in a systematic way. In this way, models can be customised and the raw model code itself, produced in a readable way by MultilayerPy, is fully customisable. Optimisation to experimental data using local or global optimisation algorithms is included in the package along with the option to carry out statistical sampling and Bayesian inference of model parameters with a Markov chain Monte Carlo (MCMC) sampler (via the emcee Python package). MultilayerPy abstracts the model building process into separate building blocks, increasing the reproducibility of results and minimising human error. This paper describes the general functionality of MultilayerPy and demonstrates this with use cases based on the oleic- acid–ozone heterogeneous reaction system. The tutorials in the source code (written as Jupyter notebooks) and the documentation aim to encourage users to take advantage of this tool, which is intended to be developed in conjunction with the user base.
AB - Kinetic multi-layer models of aerosols and films have become the state-of-the-art method of describing complex aerosol processes at the particle and film level. We present MultilayerPy: an open-source framework for building, running and optimising kinetic multi-layer models – namely the kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB) and the kinetic multi-layer model of gas–particle interactions in aerosols and clouds (KM-GAP). The modular nature of this package allows the user to iterate through various reaction schemes, diffusion regimes and experimental conditions in a systematic way. In this way, models can be customised and the raw model code itself, produced in a readable way by MultilayerPy, is fully customisable. Optimisation to experimental data using local or global optimisation algorithms is included in the package along with the option to carry out statistical sampling and Bayesian inference of model parameters with a Markov chain Monte Carlo (MCMC) sampler (via the emcee Python package). MultilayerPy abstracts the model building process into separate building blocks, increasing the reproducibility of results and minimising human error. This paper describes the general functionality of MultilayerPy and demonstrates this with use cases based on the oleic- acid–ozone heterogeneous reaction system. The tutorials in the source code (written as Jupyter notebooks) and the documentation aim to encourage users to take advantage of this tool, which is intended to be developed in conjunction with the user base.
U2 - 10.5194/gmd-15-7139-2022
DO - 10.5194/gmd-15-7139-2022
M3 - Article
SN - 1991-9603
VL - 15
SP - 7139
EP - 7151
JO - Geoscientific Model Development
JF - Geoscientific Model Development
IS - 18
ER -