Movement process analysis of the high-speed long-runout Shuicheng landslide over 3-D complex terrain using a depth-averaged numerical model

W. Zhao, X. Xia, X. Su, Q. Liang, X. Liu, N. Ju

Research output: Contribution to journalArticlepeer-review


Flow-like landslide is one of the most catastrophic types of natural hazards due to its high velocity and long travel distance. In 2019, a large catastrophic landslide was triggered by heavy rainfall and occurred in Shuicheng County, Guizhou, China. The Shuicheng landslide was characterized by a short slip time, high speed, and long sliding distance, causing significant damages to the downstream communities and properties. Depth-averaged models have been widely used to predict the velocity and runout distance of flow-like landslides. However, most of the existing depth-averaged models have various shortcomings for application in real-world simulations. In this study, a high-performance depth-averaged model taking into account the effects of topography-related vertical acceleration and centrifugal force was used to examine the influence of complex 3-D terrain on the landslide movement process. The simulation results were in satisfactory agreement with the field observations. This work reveals the landslide movement process at different stages, including acceleration, diversion, secondary acceleration, impact, and deposition. The maximum average velocity was predicted to be 35 m/s, with a local maximum velocity exceeding 50 m/s. The seismic records obtained from the adjacent seismic stations and the predicted kinetic energy and velocity of the landslide event revealed a dual acceleration and obstruction process. It was also found that the movement process and final deposit morphology were strongly influenced by the complex terrain and were sensitive to the surface friction coefficient. This may also be the reason for the survival of some houses in the middle of the slope during the event. This study provides a reference for investigating long-runout, high-speed, flow-like landslides.
Original languageEnglish
Pages (from-to)3213–3226
Number of pages14
Early online date7 Jun 2021
Publication statusPublished - Sept 2021


  • Shuicheng landslide
  • Movement process
  • Terrain effect
  • Friction coefficient sensitivity
  • Seismic wave


Dive into the research topics of 'Movement process analysis of the high-speed long-runout Shuicheng landslide over 3-D complex terrain using a depth-averaged numerical model'. Together they form a unique fingerprint.

Cite this