Modelling and Validation of Spectral Reflectance for the Colon

Dzena Hidovic, Elzbieta Claridge

Research output: Contribution to journalArticle

77 Citations (Scopus)


The spectral reflectance of the colon is known to be affected by malignant and pre-malignant changes in the tissue. As part of long-term research on the derivation of diagnostically important parameters characterizing colon histology, we have investigated the effects of the normal histological variability on the remitted spectra. This paper presents a detailed optical model of the normal colon comprising mucosa, submucosa and the smooth muscle layer. Each layer is characterized by five variable histological parameters: the volume fraction of blood, the haemoglobin saturation, the size of the scattering particles, including collagen, the volume fraction of the scattering particles and the layer thickness, and three optical parameters: the anisotropy factor, the refractive index of the medium and the refractive index of the scattering particles. The paper specifies the parameter ranges corresponding to normal colon tissue, including some previously unpublished ones. Diffuse reflectance spectra were modelled using the Monte Carlo method. Validation of the model-generated spectra against measured spectra demonstrated that good correspondence was achieved between the two. The analysis of the effect of the individual histological parameters on the behaviour of the spectra has shown that the spectral variability originates mainly from changes in the mucosa. However, the submucosa and the muscle layer must be included in the model as they have a significant constant effect on the spectral reflectance above 600 nm. The nature of variations in the spectra also suggests that it may be possible to carry out model inversion and to recover parameters characterizing the colon from multi-spectral images. A preliminary study, in which the mucosal blood and collagen parameters were modified to reflect histopathological changes associated with colon cancer, has shown that the spectra predicted by our model resemble measured spectral reflectance of adenocarcinomas. This suggests that an extended model, which incorporates parameters corresponding to an abnormal colon, may be effective for differentiation between normal and cancerous tissues.
Original languageEnglish
Pages (from-to)1071-1093
Number of pages23
JournalPhysics in Medicine and Biology
Issue number6
Publication statusPublished - 21 Mar 2005


Dive into the research topics of 'Modelling and Validation of Spectral Reflectance for the Colon'. Together they form a unique fingerprint.

Cite this