Modeling the Effect of Defects and Disorder in Amorphous Metal-Organic Frameworks

Irene Bechis, Adam F. Sapnik, Andrew Tarzia, Emma H. Wolpert, Matthew A. Addicoat, David A. Keen, Thomas D. Bennett, Kim E. Jelfs*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Amorphous metal-organic frameworks (aMOFs) are a class of disordered framework materials with a defined local order given by the connectivity between inorganic nodes and organic linkers, but absent long-range order. The rational development of function for aMOFs is hindered by our limited understanding of the underlying structure-property relationships in these systems, a consequence of the absence of long-range order, which makes experimental characterization particularly challenging. Here, we use a versatile modeling approach to generate in silico structural models for an aMOF based on Fe trimers and 1,3,5-benzenetricarboxylate (BTC) linkers, Fe-BTC. We build a phase space for this material that includes nine amorphous phases with different degrees of defects and local order. These models are analyzed through a combination of structural analysis, pore analysis, and pair distribution functions. Therefore, we are able to systematically explore the effects of the variation of each of these features, both in isolation and combined, for a disordered MOF system, something that would not be possible through experiment alone. We find that the degree of local order has a greater impact on structure and properties than the degree of defects. The approach presented here is versatile and allows for the study of different structural features and MOF chemistries, enabling the derivation of design rules for the rational development of aMOFs.

Original languageEnglish
Pages (from-to)9042-9054
Number of pages13
JournalChemistry of Materials
Volume34
Issue number20
Early online date13 Oct 2022
DOIs
Publication statusPublished - 25 Oct 2022

Bibliographical note

Publisher Copyright:
© 2022 American Chemical Society.

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Modeling the Effect of Defects and Disorder in Amorphous Metal-Organic Frameworks'. Together they form a unique fingerprint.

Cite this