Metabolomics, machine learning and immunohistochemistry to predict succinate dehydrogenase mutational status in phaeochromocytomas and paragangliomas

Paal Wallace, Catleen Conrad, Sascha Bruckmann, Ying Pang, Eduardo Caleiras, Masanori Murakami, Esther Korpershoek, Zhenping Zhuang, Elena Rapizzi, Matthias Kroiss, Volker Gudziol, Henri J L M Timmers, Massimo Mannelli, Jens Pietzsch, Felix Beuschlein, Karel Pacak, Mercedes Robledo, Barbara Klink, Mirko Peitzsch, Anthony J GillArthur S Tischler, Ronald De Krijger, Thomas Papathomas, Daniela Aust, Graeme Eisenhofer, Susan Richter

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
Original languageEnglish
Pages (from-to)378-387
JournalJournal of Pathology
Volume251
Issue number4
DOIs
Publication statusPublished - 27 May 2020

Keywords

  • Krebs cycle metabolites
  • LC–MS/MS
  • diagnostics
  • linear discriminant analysis
  • mass spectrometry
  • metabolite profiling
  • multi-observer
  • prediction models
  • succinate to fumarate ratio
  • variants of unknown significance

ASJC Scopus subject areas

  • Pathology and Forensic Medicine

Cite this