Mechanism of Action and Design of Potent Antibacterial Block Copolymer Nanoparticles

Hayley C. Parkin, Steven T.G. Street*, Brent Gowen, Luiz H. Da-Silva-Correa, Rebecca Hof, Heather L. Buckley, Ian Manners*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Self-assembled polymer nanoparticles are promising antibacterials, with nonspherical morphologies of particular interest as recent work has demonstrated enhanced antibacterial activity relative to their spherical counterparts. However, the reasons for this enhancement are currently unclear. We have performed a multifaceted analysis of the antibacterial mechanism of action of 1D nanofibers relative to nanospheres by the use of flow cytometry, high-resolution microscopy, and evaluations of the antibacterial activity of pristine and tetracycline-loaded nanoparticles. Low-length dispersity, fluorescent diblock copolymer nanofibers with a crystalline poly(fluorenetrimethylenecarbonate) (PFTMC) core (length = 104 and 472 nm, height = 7 nm, width = 10-13 nm) and a partially protonated poly(dimethylaminoethyl methacrylate) (PDMAEMA) corona (length = 12 nm) were prepared via seeded growth living crystallization-driven self-assembly. Their behavior was compared to that of analogous nanospheres containing an amorphous PFTMC core (diameter of 12 nm). While all nanoparticles were uptaken into Escherichia coli W3110, crystalline-core nanofibers were observed to cause significant bacterial damage. Drug loading studies indicated that while all nanoparticle antibacterial activity was enhanced in combination with tetracycline, the enhancement was especially prominent when small nanoparticles (ca. 15-25 nm) were employed. Therefore, the identified differences in the mechanism of action and the demonstrated consequences for nanoparticle size and morphology control may be exploited for the future design of potent antibacterial agents for overcoming antibacterial resistance. This study also reinforces the requirement of morphological control over polymer nanoparticles for biomedical applications, as differences in activity are observed depending on their size, shape, and core-crystallinity.

Original languageEnglish
Pages (from-to)5128-5141
Number of pages14
JournalJournal of the American Chemical Society
Volume146
Issue number8
Early online date15 Feb 2024
DOIs
Publication statusPublished - 28 Feb 2024

Bibliographical note

Publisher Copyright:
© 2024 American Chemical Society.

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Mechanism of Action and Design of Potent Antibacterial Block Copolymer Nanoparticles'. Together they form a unique fingerprint.

Cite this