Mechanical behaviour of additively manufactured lunar regolith simulant components

Athanasios Goulas*, Jon G.P. Binner, Daniel S. Engstrøm, Russell A. Harris, Ross J. Friel

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Additive manufacturing and its related techniques have frequently been put forward as a promising candidate for planetary in-situ manufacturing, from building life-sustaining habitats on the Moon to fabricating various replacements parts, aiming to support future extra-terrestrial human activity. This paper investigates the mechanical behaviour of lunar regolith simulant material components, which is a potential future space engineering material, manufactured by a laser-based powder bed fusion additive manufacturing system. The influence of laser energy input during processing was associated with the evolution of component porosity, measured via optical and scanning electron microscopy in combination with gas expansion pycnometry. The compressive strength performance and Vickers micro-hardness of the components were analysed and related back to the processing history and resultant microstructure of the lunar regolith simulant build material. Fabricated structures exhibited a relative porosity of 44–49% and densities ranging from 1.76 to 2.3 g cm−3, with a maximum compressive strength of 4.2 ± 0.1 MPa and elastic modulus of 287.3 ± 6.6 MPa, the former is comparable to a typical masonry clay brick (3.5 MPa). The additive manufacturing parts also had an average hardness value of 657 ± 14 HV0.05/15, better than borosilicate glass (580 HV). This study has shed significant insight into realising the potential of a laser-based powder bed fusion additive manufacturing process to deliver functional engineering assets via in-situ and abundant material sources that can be potentially used for future engineering applications in aerospace and astronautics.

Original languageEnglish
JournalProceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
Early online date28 May 2018
DOIs
Publication statusE-pub ahead of print - 28 May 2018

Keywords

  • In-situ resource utilisation
  • laser additive manufacturing
  • lunar construction
  • lunar regolith
  • mechanical properties
  • powder bed fusion

ASJC Scopus subject areas

  • Materials Science(all)
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Mechanical behaviour of additively manufactured lunar regolith simulant components'. Together they form a unique fingerprint.

Cite this