Maternal gut Bifidobacterium breve modifies fetal brain metabolism in germ-free mice

Jorge Lopez-Tello*, Raymond Kiu, Zoe Schofield, Cindy X.W. Zhang, Douwe van Sinderen, Gwénaëlle Le Gall, Lindsay J. Hall, Amanda N. Sferruzzi-Perri

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Downloads (Pure)

Abstract

Background: Recent advances have significantly expanded our understanding of the gut microbiome's influence on host physiology and metabolism. However, the specific role of certain microorganisms in gestational health and fetal development remains underexplored.

Objective: This study investigates the impact of Bifidobacterium breve UCC2003 on fetal brain metabolism when colonized in the maternal gut during pregnancy.

Methods: Germ-free pregnant mice were colonized with or without B. breve UCC2003 during pregnancy. The metabolic profiles of fetal brains were analyzed, focusing on the presence of key metabolites and the expression of critical metabolic and cellular pathways.

Results: Maternal colonization with B. breve resulted in significant metabolic changes in the fetal brain. Specifically, ten metabolites, including citrate, 3-hydroxyisobutyrate, and carnitine, were reduced in the fetal brain. These alterations were accompanied by increased abundance of transporters involved in glucose and branched-chain amino acid uptake. Furthermore, supplementation with this bacterium was associated with elevated expression of critical metabolic pathways such as PI3K-AKT, AMPK, STAT5, and Wnt-β-catenin signaling, including its receptor Frizzled-7. Additionally, there was stabilization of HIF-2 protein and modifications in genes and proteins related to cellular growth, axogenesis, and mitochondrial function.

Conclusions: The presence of maternal B. breve during pregnancy plays a crucial role in modulating fetal brain metabolism and growth. These findings suggest that Bifidobacterium could modify fetal brain development, potentially offering new avenues for enhancing gestational health and fetal development through microbiota-targeted interventions.
Original languageEnglish
Article number102004
JournalMolecular metabolism
Early online date8 Aug 2024
DOIs
Publication statusE-pub ahead of print - 8 Aug 2024

Cite this