Abstract
Muscle protein synthesis rates decrease during contraction/exercise, but rapidly increase post-exercise. Previous studies mainly focused on signaling pathways that control protein synthesis during post-exercise recovery, such as mTOR and its downstream targets S6K1 and 4E-BP1. In this study, we investigated the effect of high-frequency electrical stimulation on the phosphorylation state of signaling components controlling protein synthesis in rat skeletal muscle. Electrical stimulation increased S6K1 Thr389 phosphorylation, which was unaffected by Torin1, a selective mTOR inhibitor, suggesting that S6K1 phosphorylation by contraction was mTOR-independent. Phosphorylation of eIF4B Ser422 was also increased during electrical stimulation, which was abrogated by inhibition of MEK/ERK/RSK1 activation. Moreover, although phosphorylation of conventional mTOR sites in 4E-BP1 decreased during contraction, mTOR-independent phosphorylation was also apparent, which was associated with the release of 4E-BP1 from eIF4E. The results indicate mTOR-independent phosphorylation of S6K1 and 4E-BP1 and suggest MEK/ERK/RSK1-dependent phosphorylation of eIF4B during skeletal muscle contraction. These phosphorylation events would keep the translation initiation machinery "primed" in an active state so that protein synthesis could quickly resume post-exercise.
Original language | English |
---|---|
Pages (from-to) | 1877-1886 |
Number of pages | 10 |
Journal | Cellular Signalling |
Volume | 25 |
Issue number | 9 |
Early online date | 21 May 2013 |
DOIs | |
Publication status | Published - 1 Sept 2013 |
Keywords
- 4E-BP1
- AMPK
- Contraction
- EIF4B
- Protein synthesis
- S6K1
ASJC Scopus subject areas
- Cell Biology