Macromolecule oxidation and DNA repair in mussel (Mytilus edulis L.) gill following exposure to Cd and Cr(VI)

C Emmanouil, T M T Sheehan, J K Chipman

Research output: Contribution to journalArticlepeer-review

64 Citations (Scopus)


The oxidation of DNA and lipid was analysed in the marine mussel (Mytilus edulis) in response to exposure (10microg/l and 200microg/l) to cadmium (Cd) and chromium [Cr(VI)]. Concentration dependent uptake of both metals into mussel tissues was established and levels of gill ATP were not depleted at these exposure levels. DNA strand breakage in gill cells (analysed by the comet assay) was elevated by both metals, however, DNA oxidation [measured by DNA strand breakage induced by the DNA repair enzyme formamidopyrimidine glycosylase (FPG)] was not elevated. This was despite a statistically significant increase in both malondialdehyde and 4-hydroxynonenal - indicative of lipid peroxidation - following treatment with Cd. In contrast, both frank DNA stand breaks and FPG-induced DNA strand breaks (indicative of DNA oxidation) were increased following injection of mussels with sodium dichromate (10.4microgCr(VI)/mussel). The metals also showed differential inhibitory potential towards DNA repair enzyme activity with Cd exhibiting inhibition of DNA cutting activity towards an oligonucleotide containing 8-oxo-7,8-dihydro-2'-deoxyguanosine and Cr(VI) showing inhibition of such activity towards an oligonucleotide containing ethenoadenosine, both at 200microg/l. The metals thus show DNA damage activity in mussel gill with distinct mechanisms involving both direct and indirect (oxidative) DNA damage, as well as impairing different DNA repair capacities. A combination of these activities can contribute to adverse effects in these organisms.
Original languageEnglish
Pages (from-to)27-35
Number of pages9
JournalAquatic Toxicology
Issue number1
Early online date3 Feb 2007
Publication statusPublished - 20 Apr 2007


  • Animals
  • Comet Assay
  • DNA Repair
  • DNA Damage
  • Glutathione
  • Carbonates
  • Mytilus edulis
  • Oxidation-Reduction
  • Chromates
  • DNA
  • Cadmium
  • Adenosine Triphosphate
  • Aldehydes
  • Gills
  • Lipid Metabolism
  • Malondialdehyde


Dive into the research topics of 'Macromolecule oxidation and DNA repair in mussel (Mytilus edulis L.) gill following exposure to Cd and Cr(VI)'. Together they form a unique fingerprint.

Cite this