Loom: Query-aware partitioning of online graphs

Hugo Firth, Paolo Missier, Jack Aiston

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

As with general graph processing systems, partitioning data over a cluster of machines improves the scalability of graph database management systems. However, these systems will incur additional network cost during the execution of a query workload, due to inter-partition traversals. Workload-agnostic partitioning algorithms typically minimise the likelihood of any edge crossing partition boundaries. However, these partitioners are sub-optimal with respect to many workloads, especially queries, which may require more frequent traversal of specific subsets of inter-partition edges. Furthermore, they are largely unsuited to operating incrementally on dynamic, growing graphs. We present a new graph partitioning algorithm, Loom, that operates on a stream of graph updates and continuously allocates the new vertices and edges to partitions, taking into account a query workload of graph pattern expressions along with their relative frequencies. First we capture the most common patterns of edge traversals which occur when executing queries. We then compare sub-graphs, which present themselves incrementally in the graph update stream, against these common patterns. Finally we attempt to allocate each match to single partitions, reducing the number of inter-partition edges within frequently traversed sub-graphs and improving average query performance. Loom is extensively evaluated over several large test graphs with realistic query workloads and various orderings of the graph updates. We demonstrate that, given a workload, our prototype produces partitionings of significantly better quality than existing streaming graph partitioning algorithms Fennel & LDG.

Original languageEnglish
Title of host publicationAdvances in Database Technology - EDBT 2018
Subtitle of host publication21st International Conference on Extending Database Technology, Proceedings
EditorsMichael Bohlen, Reinhard Pichler, Norman May, Erhard Rahm, Shan-Hung Wu, Katja Hose
PublisherOpenProceedings.org
Pages337-348
Number of pages12
ISBN (Electronic)9783893180783
DOIs
Publication statusPublished - 2018
Event21st International Conference on Extending Database Technology, EDBT 2018 - Vienna, Austria
Duration: 26 Mar 201829 Mar 2018

Publication series

NameAdvances in Database Technology - EDBT
Volume2018-March
ISSN (Electronic)2367-2005

Conference

Conference21st International Conference on Extending Database Technology, EDBT 2018
Country/TerritoryAustria
CityVienna
Period26/03/1829/03/18

Bibliographical note

Publisher Copyright:
© 2018 Copyright held by the owner/author(s)

ASJC Scopus subject areas

  • Information Systems
  • Software
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Loom: Query-aware partitioning of online graphs'. Together they form a unique fingerprint.

Cite this