Abstract
This paper is a manifesto aimed at computer scientists interested in developing and applying scientific discovery methods. It argues that: science is experiencing an unprecedented “explosion” in the amount of available data; traditional data analysis methods cannot deal with this increased quantity of data; there is an urgent need to automate the process of refining scientific data into scientific knowledge; inductive logic programming (ILP) is a data analysis framework well suited for this task; and exciting new scientific discoveries can be achieved using ILP scientific discovery methods. We describe an example of using ILP to analyse a large and complex bioinformatic database that has produced unexpected and interesting scientific results in functional genomics. We then point a possible way forward to integrating machine learning with scientific databases to form intelligent databases.
Original language | English |
---|---|
Pages | 273-289 |
DOIs | |
Publication status | Published - 2007 |
Keywords
- bioinformatics, data mining, inductive logic programming, machine learning, relational learning, scientific knowledge