TY - JOUR
T1 - Light and viscosity effects on the curing potential of bulk-fill composites placed in deep cavities
AU - Modena, Rodrigo Antonio
AU - Sinhoreti, Mário Alexandre Coelho
AU - Palin, William
AU - Cavalcante, Larissa Maria
AU - Schneider, Luis Felipe
PY - 2021/5/23
Y1 - 2021/5/23
N2 - To determine the influence of light curing units (LCUs) and material viscosity on the degree of conversion (DC) of bulk-fill (BF) resin-based composites (RBCs) placed in deep cavity preparations. Four LCUs were tested: Valo cordless, Bluephase-G2, Poly wireless and Radii-cal. Light irradiance was determined at 0 mm and 6 mm distance to the reading sensor. The following RBCs were considered: Filtek BF, Filtek BF Flow, Opus BF, Opus BF Flow, Tetric N-Ceram BF and Surefil SDR Flow. Sirius-Z was used with the incremental technique. DC (n = 3) was evaluated by spectroscopy both at top and bottom regions of deep preparations with 6 mm depth. The data were submitted to ANOVA and Tukey's test (α = 0.05). Pearson's correlation (95%) was used to verify the relation between the LCUs and the curing potential of RBCs. The DC at 6 mm depth was reduced when Opus BF, Opus BF Flow and Tetric N-Ceram BF were activated with Radii-cal. There was a positive correlation between the LCU irradiance and the bottom/top conversion ratios. The materials' viscosities did not affect the curing potential. Bulk-fill composites did not present higher curing potential than the conventional composite used with the incremental technique; the most important aspect of the LCU was the irradiance ratio; and the materials' viscosity did not affect the curing potential as a function of depth. Radii-cal negatively impacted the degree of conversion at 6 mm depth for most bulk-fill resin composites. Depending on the brand, bulk-fill composites may present reduced curing potential due to the light source when placed in deep cavities. Dentists should avoid LCU with acrylic tips to photoactivate bulk-fill resin-based composites.
AB - To determine the influence of light curing units (LCUs) and material viscosity on the degree of conversion (DC) of bulk-fill (BF) resin-based composites (RBCs) placed in deep cavity preparations. Four LCUs were tested: Valo cordless, Bluephase-G2, Poly wireless and Radii-cal. Light irradiance was determined at 0 mm and 6 mm distance to the reading sensor. The following RBCs were considered: Filtek BF, Filtek BF Flow, Opus BF, Opus BF Flow, Tetric N-Ceram BF and Surefil SDR Flow. Sirius-Z was used with the incremental technique. DC (n = 3) was evaluated by spectroscopy both at top and bottom regions of deep preparations with 6 mm depth. The data were submitted to ANOVA and Tukey's test (α = 0.05). Pearson's correlation (95%) was used to verify the relation between the LCUs and the curing potential of RBCs. The DC at 6 mm depth was reduced when Opus BF, Opus BF Flow and Tetric N-Ceram BF were activated with Radii-cal. There was a positive correlation between the LCU irradiance and the bottom/top conversion ratios. The materials' viscosities did not affect the curing potential. Bulk-fill composites did not present higher curing potential than the conventional composite used with the incremental technique; the most important aspect of the LCU was the irradiance ratio; and the materials' viscosity did not affect the curing potential as a function of depth. Radii-cal negatively impacted the degree of conversion at 6 mm depth for most bulk-fill resin composites. Depending on the brand, bulk-fill composites may present reduced curing potential due to the light source when placed in deep cavities. Dentists should avoid LCU with acrylic tips to photoactivate bulk-fill resin-based composites.
KW - Bulk-fill
KW - Composite
KW - Depth of cure
KW - Light curing units
KW - Polymerization
KW - Viscosity
UR - http://www.scopus.com/inward/record.url?scp=85106245494&partnerID=8YFLogxK
U2 - 10.1007/s10266-021-00614-3
DO - 10.1007/s10266-021-00614-3
M3 - Article
C2 - 34023954
JO - Odontology
JF - Odontology
SN - 1618-1247
ER -