TY - JOUR
T1 - Learning, capital-embodied technology and aggregate fluctuations
AU - Gortz, Christoph
AU - Tsoukalas, J.D.
N1 - Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2012
Y1 - 2012
N2 - Recent cyclical episodes in the U.S. and G-7 economies are asymmetric: recoveries and expansions tend to be long and gradual and busts tend to be short and sharp. A large body of work views the two recent cyclical U.S. episodes, namely, the "new economy" boom in the late 1990s, and the 2000s housing boom-bust as episodes where over-optimistic beliefs have played a significant role. These episodes have revived interest in expectations driven business cycles models. However, previous work in this area has not addressed the important asymmetry feature of business cycles. This paper takes a step towards addressing this limitation of expectations driven business cycle models. We propose a generalization of the model with vintage capital and learning about capital embodied productivity and show it can deliver fluctuations that are asymmetric as in the U.S. data. Learning, calibrated to match the procyclical forecast precision from the Survey of Professional Forecasters, is crucial for the model's ability to generate asymmetries. Forecast errors generated by the model are shown to trigger recessions that mimic in magnitude, duration and depth the typical post WW II U.S. recession.
AB - Recent cyclical episodes in the U.S. and G-7 economies are asymmetric: recoveries and expansions tend to be long and gradual and busts tend to be short and sharp. A large body of work views the two recent cyclical U.S. episodes, namely, the "new economy" boom in the late 1990s, and the 2000s housing boom-bust as episodes where over-optimistic beliefs have played a significant role. These episodes have revived interest in expectations driven business cycles models. However, previous work in this area has not addressed the important asymmetry feature of business cycles. This paper takes a step towards addressing this limitation of expectations driven business cycle models. We propose a generalization of the model with vintage capital and learning about capital embodied productivity and show it can deliver fluctuations that are asymmetric as in the U.S. data. Learning, calibrated to match the procyclical forecast precision from the Survey of Professional Forecasters, is crucial for the model's ability to generate asymmetries. Forecast errors generated by the model are shown to trigger recessions that mimic in magnitude, duration and depth the typical post WW II U.S. recession.
UR - http://www.scopus.com/inward/record.url?partnerID=yv4JPVwI&eid=2-s2.0-84860849825&md5=7ff82fb8f362a1c33c7b6415042b3897
U2 - 10.1016/j.red.2012.04.003
DO - 10.1016/j.red.2012.04.003
M3 - Article
SN - 1094-2025
JO - Review of Economic Dynamics
JF - Review of Economic Dynamics
ER -