Kinetics of rafting in a single crystal superalloy: effects of residual microsegregation

Roger Reed, DC Cox, CMF Rae

Research output: Contribution to journalArticle

51 Citations (Scopus)

Abstract

The kinetics of directional gamma' coarsening, known as rafting, are examined in the nickel based single crystal superalloy CMSX-4. Electron microscopy and image analysis are used to characterise heat treated specimens, prestrained in creep to a plastic strain beyond the threshold required to initiate rafting. The kinetics of rafting are found to be sensitive to the presence of microsegregation from casting, incompletely removed by the heat treatment process; thus the dendritic regions raft appreciably faster than the interdendritic ones-this despite rhenium enrichment at the dendrite cores consistent with its preferred partitioning during solidification. Estimates of the activation energy required for rafting in the two regions are established and Avrami-type equations developed. Since the important gamma' forming elements aluminium and tantalum are known to partition interdendritically causing an enhanced gamma' fraction, it is suggested that the correspondingly smaller gamma channel width so caused is responsible for the greater resistance to rafting displayed by the interdendritic regions.
Original languageEnglish
Pages (from-to)893-902
Number of pages10
JournalMaterials Science and Technology
Volume23
Issue number8
DOIs
Publication statusPublished - 1 Jan 2007

Keywords

  • superalloys
  • creep deformation
  • nickel
  • rafting

Fingerprint

Dive into the research topics of 'Kinetics of rafting in a single crystal superalloy: effects of residual microsegregation'. Together they form a unique fingerprint.

Cite this