Kepler-93b: A terrestrial world measured to within 120 km, and A test case for a new Spitzer observing mode

Sarah Ballard, William J. Chaplin, David Charbonneau, Jean Michel Désert, Francois Fressin, Li Zeng, Michael W. Werner, Guy R. Davies, Victor Silva Aguirre, Sarbani Basu, Jørgen Christensen-Dalsgaard, Travis S. Metcalfe, Dennis Stello, Timothy R. Bedding, Tiago L. Campante, Rasmus Handberg, Christoffer Karoff, Yvonne Elsworth, Ronald L. Gilliland, Saskia HekkerDaniel Huber, Steven D. Kawaler, Hans Kjeldsen, Mikkel N. Lund, Mia Lundkvist

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)


We present the characterization of the Kepler-93 exoplanetary system, based on three years of photometry gathered by the Kepler spacecraft. The duration and cadence of the Kepler observations, in tandem with the brightness of the star, enable unusually precise constraints on both the planet and its host. We conduct an asteroseismic analysis of the Kepler photometry and conclude that the star has an average density of 1.652 ± 0.006 g cm-3. Its mass of 0.911 ± 0.033 M renders it one of the lowest-mass subjects of asteroseismic study. An analysis of the transit signature produced by the planet Kepler-93b, which appears with a period of 4.72673978 ± 9.7 × 10-7 days, returns a consistent but less precise measurement of the stellar density, 1.72 g cm-3. The agreement of these two values lends credence to the planetary interpretation of the transit signal. The achromatic transit depth, as compared between Kepler and the Spitzer Space Telescope, supports the same conclusion. We observed seven transits of Kepler-93b with Spitzer, three of which we conducted in a new observing mode. The pointing strategy we employed to gather this subset of observations halved our uncertainty on the transit radius ratio RP /R. We find, after folding together the stellar radius measurement of 0.919 ± 0.011 R with the transit depth, a best-fit value for the planetary radius of 1.481 ± 0.019 R ⊕. The uncertainty of 120 km on our measurement of the planet's size currently renders it one of the most precisely measured planetary radii outside of the solar system. Together with the radius, the planetary mass of 3.8 ± 1.5 M ⊕ corresponds to a rocky density of 6.3 ± 2.6 g cm-3. After applying a prior on the plausible maximum densities of similarly sized worlds between 1 and 1.5 R ⊕, we find that Kepler-93b possesses an average density within this group.

Original languageEnglish
Article number12
JournalThe Astrophysical Journal
Issue number1
Publication statusPublished - 20 Jul 2014


  • eclipses
  • methods: observational
  • planetary systems
  • stars: individual (KOI 69, KIC 3544595)

ASJC Scopus subject areas

  • Space and Planetary Science
  • Astronomy and Astrophysics


Dive into the research topics of 'Kepler-93b: A terrestrial world measured to within 120 km, and A test case for a new Spitzer observing mode'. Together they form a unique fingerprint.

Cite this