Abstract
K2-291 is a solar-type star with a radius of R ∗ = 0.899 ±0.034 R and mass of M ∗ = 0.934 ±0.038 M . From the K2 C13 data, we found one super-Earth planet (R p = 1.589 -0.072 +0.095 R ⊕ ) transiting this star on a short period orbit (P = 2.225177 -6.8e-5 +6.6e-5 days). We followed this system up with adaptive-optic imaging and spectroscopy to derive stellar parameters, search for stellar companions, and determine a planet mass. From our 75 radial velocity measurements using High Resolution Echelle Spectrometer on Keck I and High Accuracy Radial velocity Planet Searcher in the northern hemisphere on Telescopio Nazionale Galileo, we constrained the mass of K2-291 b to M p = 6.49 ±1.16 M ⊕ . We found it necessary to model correlated stellar activity radial velocity signals with a Gaussian process (GP) in order to more accurately model the effect of stellar noise on our data; the addition of the GP also improved the precision of this mass measurement. With a bulk density of ρ = 8.84 -2.03 +2.50 g cm -3 , the planet is consistent with an Earth-like rock/iron composition and no substantial gaseous envelope. Such an envelope, if it existed in the past, was likely eroded away by photoevaporation during the first billion years of the star's lifetime.
Original language | English |
---|---|
Article number | 116 |
Journal | Astronomical Journal |
Volume | 157 |
Issue number | 3 |
DOIs | |
Publication status | Published - 13 Feb 2019 |
Bibliographical note
Funding Information:This material is based upon work supported by the National Aeronautics and Space Administration under grants No. NNX15AC90G and NNX17AB59G issued through the Exoplanets Research Program. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant Agreement No. 313014 (ETAEARTH). The HARPS-N project has been funded by the Prodex Program of the Swiss Space Office (SSO), the Harvard University Origins of Life Initiative (HUOLI), the Scottish Universities Physics Alliance (SUPA), the University of Geneva, the Smithsonian Astrophysical Observatory (SAO), and the Italian National Astrophysical Institute (INAF), the University of St Andrews, Queen’s University Belfast, and the University of Edinburgh. This paper includes data collected by the Keplermission. Funding for the Keplermission is provided by the NASA Science Mission directorate. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX13AC07G and by other grants and contracts. This research has made use of NASA’s Astrophysics Data System and the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This research has made use of the corner.py code by Dan Foreman-Mackey at github.com/dfm/corner.py. This publication received support from a grant from the John Templeton Foundation. The opinions expressed are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.
Funding Information:
This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. A.W.H., I.J.M.C., and C.D.D. acknowledge support from the K2 Guest Observer Program. A.W.H. acknowledges support for our K2 team through a NASA Astrophysics Data Analysis Program grant and observing support from NASA at Keck Observatory. This work was performed in part under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute (R.D.H., C.D.D., A.V.). Some of this work has been carried out within the framework of the NCCR PlanetS, supported by the Swiss National Science Foundation. M.R.K is supported by the NSF Graduate Research Fellowhsip, grant No. DGE 1339067. A.C.C. acknowledges support from STFC consolidated grant number ST/M001296/1. D.W.L. acknowledges partial support from the Kepler mission under NASA Cooperative Agreement NNX13AB58A with the Smithsonian Astrophysical Observatory. X.D. is grateful to the Society in Science-Branco Weiss Fellowship for its financial support. C.A.W. acknowledges support by STFC grant ST/P000312/1. L.M. acknowledges the support by INAF/Frontiera through the Progetti Premiali funding scheme of the Italian Ministry of Education, University, and Research.
Publisher Copyright:
© 2019. The American Astronomical Society. All rights reserved..
Keywords
- planets and satellites: composition
- planets and satellites: detection
- techniques: radial velocities
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science